Well-posedness and ill-posedness of KdV equation with higher dispersion
被引:1
|
作者:
Li, Yin
论文数: 0引用数: 0
h-index: 0
机构:
Shaoguan Univ, Sch Math & Informat Sci, Shaoguan 512005, Peoples R China
Sun Yat Sen Univ, Dept Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R ChinaShaoguan Univ, Sch Math & Informat Sci, Shaoguan 512005, Peoples R China
Li, Yin
[1
,3
]
Yan, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R ChinaShaoguan Univ, Sch Math & Informat Sci, Shaoguan 512005, Peoples R China
Yan, Wei
[2
]
机构:
[1] Shaoguan Univ, Sch Math & Informat Sci, Shaoguan 512005, Peoples R China
[2] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[3] Sun Yat Sen Univ, Dept Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
KdV equation with 2n+1 order dispersion;
Well-posedness and ill-posedness;
Fourier restriction norm method;
KORTEWEG-DEVRIES EQUATION;
DE-VRIES EQUATION;
CAUCHY-PROBLEM;
REGULARITY;
D O I:
10.1016/j.jmaa.2014.01.035
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
First, the Cauchy problem for KdV equation with 2n +1 order dispersion is studied, and the local well-posedness result for the initial data in Sobolev spaces H-S (R) with s > -n + 1/4 is established via the Fourier restriction norm method. Second, we prove 4 that the KdV equation with 2n + 1 order dispersion is ill-posed for the initial data in H-s (R) with s < -n + 1/4, n >= 2, n is an element of N+ if the flow map is C-2 differentiable at zero form H-s(R) to C([0,T]; H-s(R)). Finally, we obtain the sharp regularity requirement for the KdV equation with 2n + 1 order dispersion s > -n + 1/4. (C) 2014 Elsevier Inc. All rights reserved.
机构:
Univ Toronto, Dept Math, Bahen Ctr, 40 St George St, Toronto, ON M5S 2E4, CanadaUniv Toronto, Dept Math, Bahen Ctr, 40 St George St, Toronto, ON M5S 2E4, Canada
机构:
Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, RJ, Brazil
Carvajal, Xavier
Gamboa, Pedro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, RJ, Brazil
Gamboa, Pedro
Santos, Raphael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Politecn, Ctr Multidisciplinar Macae, BR-21945970 Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, RJ, Brazil
机构:
Univ Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio de Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio de Janeiro, RJ, Brazil
Carvajal, X.
Panthee, M.
论文数: 0引用数: 0
h-index: 0
机构:
IMECC UNICAMP, Dept Math, BR-13083859 Sao Paulo, SP, BrazilUniv Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio de Janeiro, RJ, Brazil