Statistical Assessment of Signal and Image Symmetries

被引:0
作者
Pawlak, Miroslaw [1 ]
机构
[1] Univ Manitoba, Winnipeg, MB, Canada
来源
ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING ICAISC 2014, PT I | 2014年 / 8467卷
关键词
symmetry estimation and detection; noisy data; radial polynomials; limit distributions; semiparametric inference;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper formulates the problem of assessing the reflection symmetry of a function f observed in the presence of noise. We consider both univariate and bivariate characteristics representing signal and image functions. First the problem of estimating a parameter defining the reflection symmetry is examined. This is followed by the question of testing the given symmetry type. The estimation/detection procedure is based on minimizing the L-2-distance between empirical versions of f and its reflected version. For univariate functions this distance is estimated by the Fourier series type estimate. In the bivariate case we utilize a class of radial series represented by the Zernike functions. It is shown that the symmetry parameter can be recovered with the parametric optimal rate for all functions f of bounded variation.
引用
收藏
页码:574 / 585
页数:12
相关论文
共 9 条
[1]   ON THE CIRCLE POLYNOMIALS OF ZERNIKE AND RELATED ORTHOGONAL SETS [J].
BHATIA, AB ;
WOLF, E .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1954, 50 (01) :40-48
[2]   Testing symmetry of a nonparametric bivariate regression function [J].
Birke, Melanie ;
Dette, Holger ;
Stahljans, Kristin .
JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (02) :547-565
[3]   IMPROVING PSF CALIBRATION IN CONFOCAL MICROSCOPIC IMAGING-ESTIMATING AND EXPLOITING BILATERAL SYMMETRY [J].
Bissantz, Nicolai ;
Holzmann, Hajo ;
Pawlak, Miroslaw .
ANNALS OF APPLIED STATISTICS, 2010, 4 (04) :1871-1891
[4]   Testing for Image Symmetries-with Application to Confocal Microscopy [J].
Bissantz, Nicolai ;
Holzmann, Hajo ;
Pawlak, Miroslaw .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (04) :1841-1855
[5]  
Liu Y., 2010, Computational Symmetry in Computer Vision and Computer Graphics
[6]   On the recovery of a function on a circular domain [J].
Pawlak, M ;
Liao, SX .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (10) :2736-2753
[7]  
Pawlak M., 2006, Image Analysis by Moments: Reconstruction and Computational Aspects
[8]  
van der Vaart A. W., 1998, Cambridge Series in Statistical and Probabilistic Mathematics
[9]   Rotational Invariance Based on Fourier Analysis in Polar and Spherical Coordinates [J].
Wang, Qing ;
Ronneberger, Olaf ;
Burkhardt, Hans .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (09) :1715-1722