Semi-Lagrangian Method for Advection Problem with Adaptive Grid

被引:3
作者
Efremov, A. [1 ]
Karepova, E. [1 ]
Shaydurov, V. [1 ]
Vyatkin, A. [1 ]
机构
[1] SB RAS, Inst Computat Modeling, Krasnoyarsk 660036, Russia
来源
APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'16) | 2016年 / 1773卷
基金
俄罗斯科学基金会;
关键词
D O I
10.1063/1.4964997
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, the semi-Lagrangian method is considered for the numerical solution of the advection problem. A numerical solution is constructed as a piecewise constant function on a rectangular grid. The proposed method is stable and gives an approximate solution with the first order of accuracy. To reduce the effect of smoothing an approximate solution because of numerical viscosity, a mesh refinement is applied in the vicinity of large gradients of the approximate solution. The localization of the smoothing effect is illustrated by a numerical example. In contrast to the traditional Eulerian schemes, semi-Lagrangian algorithms do not involve a time step restriction.
引用
收藏
页数:7
相关论文
共 12 条
[1]  
Anderson JD., 1995, Computational Fluid Dynamics
[2]  
[Anonymous], 2003, SOBOLEV SPACES
[3]   Back and forth error compensation and correction methods for semi-Lagrangian schemes with application to level set interface computations [J].
Dupont, Todd F. ;
Liu, Yingjie .
MATHEMATICS OF COMPUTATION, 2007, 76 (258) :647-668
[4]   Some Features of the CUDA Implementation of the Semi-Lagrangian Method for the Advection Problem [J].
Efremov, A. ;
Karepova, E. ;
Vyatkin, A. .
APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'15), 2015, 1684
[5]  
Efremov A., 2014, J APPL MATH, V2014
[6]  
Griebel M., 1998, Numerical simulation in fluid dynamics: a practical introduction
[7]   Conservative semi-Lagrangian advection on adaptive unstructured meshes [J].
Iske, A ;
Käser, M .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (03) :388-411
[8]   Monotonicity of the CABARET scheme approximating a hyperbolic equation with a sign-changing characteristic field [J].
Kovyrkina, O. A. ;
Ostapenko, V. V. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (05) :783-801
[9]   An unconditionally stable fully conservative semi-Lagrangian method [J].
Lentine, Michael ;
Gretarsson, Jon Tomas ;
Fedkiw, Ronald .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (08) :2857-2879
[10]  
Morton K. M., 1996, NUMERICAL SOLUTION C