Classification of irreducible weight modules over higher rank Virasoro algebras

被引:40
作者
Lu, Rencai
Zhao, Kaiming [1 ]
机构
[1] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
[2] Peking Univ, Dept Math, Beijing 100871, Peoples R China
[3] Acad Sinica, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Virasoro algebra; generalized Virasoro algebra; weight module;
D O I
10.1016/j.aim.2005.10.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a rank n additive subgroup of C and Vir[G] the corresponding Virasoro algebra of rank n. In the present paper, irreducible weight modules with finite dimensional weight spaces over Vir[G] are completely determined. There are two different classes of them. One class consists of simple modules of intermediate series whose weight spaces are all I-dimensional. The other is constructed by using intermediate series modules over a Virasoro subalgebra of rank n - 1. The classification of such modules over the classical Virasoro algebra was obtained by O. Mathieu in 1992 using a completely different approach. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:630 / 656
页数:27
相关论文
共 20 条
[1]   Weight modules over exp-polynomial Lie algebras [J].
Billig, Y ;
Zhao, KM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 191 (1-2) :23-42
[2]  
Dokovic DZ, 1998, T AM MATH SOC, V350, P643
[3]   Verma modules over generalized Virasoro algebras Vir[G] [J].
Hu, J ;
Wang, XD ;
Zhao, KM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 177 (01) :61-69
[4]  
Kac V. G., 1987, Adv. Ser. Math. Phys., V2
[5]  
KAPLANSKY I, 1954, B AM MATH SOC, V60, P470
[6]   CLASSIFICATION OF HARISH-CHANDRA MODULES OVER THE VIRASORO LIE-ALGEBRA [J].
MATHIEU, O .
INVENTIONES MATHEMATICAE, 1992, 107 (02) :225-234
[7]   Verma modules over generalized Witt algebras [J].
Mazorchuk, V .
COMPOSITIO MATHEMATICA, 1999, 115 (01) :21-35
[8]  
Mazorchuk V, 2000, MATH NACHR, V209, P171, DOI 10.1002/(SICI)1522-2616(200001)209:1<171::AID-MANA171>3.3.CO
[9]  
2-2
[10]   New simple infinite-dimensional Lie algebras of characteristic 0 [J].
Osborn, JM .
JOURNAL OF ALGEBRA, 1996, 185 (03) :820-835