DYNAMOS: a numerical MOSFET model including quantum-mechanical and near-interface trap transient effects

被引:3
|
作者
Masson, P
Autran, JL
Munteanu, D
机构
[1] L2MP, CNRS, UMR 6137, F-13384 Marseille 13, France
[2] Inst Natl Sci Appl, LPM, CNRS, UMR 5511, F-69621 Villeurbanne, France
[3] CEA, LETI, F-38054 Grenoble 20, France
[4] IMT, ICF, L2MP, CNRS,UMR 6137, F-13451 Marseille, France
关键词
D O I
10.1016/S0038-1101(02)00041-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A numerical MOSFET model (DYNAMOS) is presented. The present approach accounts for quantum effects in the semiconductor substrate by solving the self-consistent one-dimensional Schrodinger and Poisson equations. It also includes a transient model of interface and near-interface oxide traps based on Schockley-Read-Hall statistics. By extension, this model is able to simulate the charging/discharging of an arbitrary trap sheet present in the gate-dielectric system. As a result, the calculation of the source-to-drain current, valid in both weak and strong inversion regimes before saturation, is well-adapted to describe the dynamic behavior (under a gate voltage sweep) of ultra-thin gate oxide MOSFETs, oxide/nitride and double-layer high-k dielectric based devices. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1051 / 1059
页数:9
相关论文
共 50 条
  • [1] Characterization of Near-Interface Oxide Trap Density in Nitrided Oxides for Nanoscale MOSFET Applications
    Son, Younghwan
    Baek, Chang-Ki
    Han, In-Shik
    Joo, Han-Soo
    Goo, Tae-Gyu
    Yoo, Ooksang
    Choi, Wonho
    Ji, Hee-Hwan
    Lee, Hi-Deok
    Kim, Dae M.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2009, 8 (05) : 654 - 658
  • [2] A computational quantum-mechanical model of a molecular magnetic trap
    Adamowicz, Ludwik
    Stanke, Monika
    Tellgren, Erik
    Helgaker, Trygve
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (24):
  • [3] A compact Double-Gate MOSFET model comprising quantum-mechanical and nonstatic effects
    Baccarani, G
    Reggiani, S
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1999, 46 (08) : 1656 - 1666
  • [4] A 2-D threshold-voltage model for small MOSFET with quantum-mechanical effects
    Xu, J. P.
    Li, Y. P.
    Lai, P. T.
    Chen, W. B.
    Xu, S. G.
    2005 IEEE CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS, PROCEEDINGS, 2005, : 253 - 256
  • [5] A 2D threshold-voltage model for small MOSFET with quantum-mechanical effects
    Xu, J. P.
    Li, Y. P.
    Lai, P. T.
    Chen, W. B.
    Xu, S. G.
    Guan, J. G.
    MICROELECTRONICS RELIABILITY, 2008, 48 (01) : 23 - 28
  • [6] 2-D threshold voltage model for short-channel MOSFET with quantum-mechanical effects
    Li Yan-Ping
    Xu Jing-Ping
    Chen Wei-Bing
    Xu Sheng-Guo
    Ji Feng
    ACTA PHYSICA SINICA, 2006, 55 (07) : 3670 - 3676
  • [7] A Unified Carrier-Transport Model for the Nanoscale Surrounding-Gate MOSFET Comprising Quantum-Mechanical Effects
    Hu, Guangxi
    Gu, Jinglun
    Hu, Shuyan
    Ding, Ying
    Liu, Ran
    Tang, Ting-Ao
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (07) : 1830 - 1836
  • [8] Closed-form approximation for the perturbation of MOSFET surface potential by quantum-mechanical effects
    Gildenblat, G
    Chen, TL
    Bendix, P
    ELECTRONICS LETTERS, 2000, 36 (12) : 1072 - 1073
  • [9] Near-Interface Trap Model for the Low Temperature Conductance Signal in SiC MOS Capacitors With Nitrided Gate Oxides
    Nicholls, Jordan R.
    Vidarsson, Arnar M.
    Haasmann, Daniel
    Sveinbjornsson, Einar O.
    Dimitrijev, Sima
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (09) : 3722 - 3728
  • [10] Analytical Modeling of Nanoscale Quad Gate MOSFET Including Quantum Mechanical Effects
    Balamurugan, N. B.
    Abirami, Surya
    Buvaneswari, B.
    Sowmya, K.
    2016 CONFERENCE ON EMERGING DEVICES AND SMART SYSTEMS (ICEDSS), 2016, : 1 - 5