On the Laplacian coefficients of unicyclic graphs

被引:54
作者
Stevanovic, Dragan [1 ,2 ]
Ilic, Aleksandar [1 ]
机构
[1] Univ Nis, Fac Sci & Math, Dept Math & Informat, Nish 18000, Serbia
[2] Univ Primorska FAMNIT, Koper 6000, Slovenia
关键词
Laplacian coefficients; Laplacian matrix; Laplacian-like energy; Unicyclic graph; VARIABLE NEIGHBORHOOD SEARCH; EXTREMAL GRAPHS;
D O I
10.1016/j.laa.2008.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph of order n and let P(G, gimel) = Sigma(n)(k=o)(-1)C-k(k)lambda(n-k) be the characteristic polynomial of its Laplacian matrix. Generalizing an approach of Mohar on graph transformations, we show that among all connected unicyclic graphs of order n, the kth coefficient C-k is largest when the graph is a cycle C-n and smallest when the graph is the a S-n with an additional edge between two of its pendent vertices. A relation to the recently established Laplacian-like energy of a graph is discussed. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2290 / 2300
页数:11
相关论文
共 12 条
[1]   Variable neighborhood search for extremal graphs: 1 The AutoGraphiX system [J].
Caporossi, G ;
Hansen, P .
DISCRETE MATHEMATICS, 2000, 212 (1-2) :29-44
[2]   Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy [J].
Caporossi, G ;
Cvetkovic, D ;
Gutman, I ;
Hansen, P .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1999, 39 (06) :984-996
[3]  
Cvetkovic D., 1995, Spectra of Graphs: Theory and Applications
[4]  
Gutman I., 1978, Ber. Math.-Statist. Sekt. Forschungsz. Graz, V103, P1, DOI [DOI 10.1088/1742-5468/2008/10/P10008, DOI 10.1016/J.LAA.2004.02.038]
[5]   Unicyclic graphs with maximal energy [J].
Hou, YP ;
Gutman, I ;
Woo, CW .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 356 (1-3) :27-36
[6]  
Kelmans A. K., 1974, Journal of Combinatorial Theory, Series B, V16, P197, DOI 10.1016/0095-8956(74)90065-3
[7]  
Liu J, 2008, MATCH-COMMUN MATH CO, V59, P355
[8]  
MERRIS R., 1995, Linear Multilinear Algebra, V39, P19
[9]   On the Laplacian coefficients of acyclic graphs [J].
Mohar, Bojan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (2-3) :736-741
[10]  
Stanley R., 1999, ENUMERATIVE COMBINAT