All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance

被引:674
作者
Zhao, L. D. [1 ]
Wu, H. J. [2 ]
Hao, S. Q. [3 ]
Wu, C. I. [4 ]
Zhou, X. Y. [5 ]
Biswas, K. [1 ]
He, J. Q. [2 ]
Hogan, T. P. [4 ]
Uher, C. [5 ]
Wolverton, C. [3 ]
Dravid, V. P. [3 ]
Kanatzidis, M. G. [1 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] South Univ Sci & Technol China, Dept Phys, Shenzhen 518055, Peoples R China
[3] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[4] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[5] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
关键词
P-TYPE PBS; BULK THERMOELECTRICS; CONDUCTIVITY; FIGURE; AGPBMSBTE2+M;
D O I
10.1039/c3ee42187b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a high ZT of similar to 2.0 at 823 K for 2% Na-doped PbTe with 6% MgTe with excellent thermal stability. We attribute the high thermoelectric performance to a synergistic combination of enhanced power factor, reduction of the lattice thermal conductivity and simultaneous suppression of bipolar thermal conductivity. MgTe inclusion in PbTe owns triple functions: the Mg alloying within the solubility limit in PbTe modifies the valence band structure by pushing the two valence bands (L and Sigma bands) closer in energy, thereby facilitating charge carrier injection. When the solubility limit of Mg is exceeded, ubiquitous endotaxial nanostructures form, which when coupled with mesoscale microstructuring results in a very low (lattice) thermal conductivity through all-scaled length phonon scattering. Meanwhile, most significantly, the Mg alloying enlarges the energy gap of conduction band (C band) and light valence band (L band), thereby suppresses the bipolar thermal conductivity through an increase in band gap.
引用
收藏
页码:3346 / 3355
页数:10
相关论文
共 46 条
[1]   Nanoscale design to enable the revolution in renewable energy [J].
Baxter, Jason ;
Bian, Zhixi ;
Chen, Gang ;
Danielson, David ;
Dresselhaus, Mildred S. ;
Fedorov, Andrei G. ;
Fisher, Timothy S. ;
Jones, Christopher W. ;
Maginn, Edward ;
Kortshagen, Uwe ;
Manthiram, Arumugam ;
Nozik, Arthur ;
Rolison, Debra R. ;
Sands, Timothy ;
Shi, Li ;
Sholl, David ;
Wu, Yiying .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (06) :559-588
[2]   Resonant states in the electronic structure of the high performance thermoelectrics AgPbmSbTe2+m:: The role of Ag-Sb microstructures -: art. no. 146403 [J].
Bilc, D ;
Mahanti, SD ;
Quarez, E ;
Hsu, KF ;
Pcionek, R ;
Kanatzidis, MG .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :146403-1
[3]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[4]   High thermoelectric figure of merit in nanostructured p-type PbTe-MTe (M = Ca, Ba) [J].
Biswas, Kanishka ;
He, Jiaqing ;
Wang, Guoyu ;
Lo, Shih-Han ;
Uher, Ctirad ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) :4675-4684
[5]  
Biswas K, 2011, NAT CHEM, V3, P160, DOI [10.1038/nchem.955, 10.1038/NCHEM.955]
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Coherent and incoherent phase stabilities of thermoelectric rocksalt IV-VI semiconductor alloys [J].
Doak, Jeff W. ;
Wolverton, C. .
PHYSICAL REVIEW B, 2012, 86 (14)
[8]   High Performance Na-doped PbTe-PbS Thermoelectric Materials: Electronic Density of States Modification and Shape-Controlled Nanostructures [J].
Girard, Steven N. ;
He, Jiaqing ;
Zhou, Xiaoyuan ;
Shoemaker, Daniel ;
Jaworski, Christopher M. ;
Uher, Ctirad ;
Dravid, Vinayak P. ;
Heremans, Joseph P. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (41) :16588-16597
[9]   THE ELECTRICAL CONDUCTIVITY AND THERMOELECTRIC POWER OF BISMUTH TELLURIDE [J].
GOLDSMID, HJ .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1958, 71 (460) :633-646
[10]   First-principles theory of hydrogen diffusion in aluminum [J].
Gunaydin, Hakan ;
Barabash, Sergey V. ;
Houk, K. N. ;
Ozolins, V. .
PHYSICAL REVIEW LETTERS, 2008, 101 (07)