EXISTENCE OF POSITIVE SOLUTION FOR KIRCHHOFF TYPE PROBLEM WITH CRITICAL DISCONTINUOUS NONLINEARITY

被引:7
作者
Figueiredo, Giovany M. [1 ]
dos Santos, Gelson G. [2 ]
机构
[1] Univ Brasilia UNB, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Para UFPA, Fac Matemat, BR-6075110 Belem, Para, Brazil
关键词
Variational methods; critical exponents; Kirchhoff equation; discontinuous nonlinearity; CRITICAL GROWTH; EQUATIONS;
D O I
10.5186/aasfm.2019.4453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we are concerned with existence of positive solution to the class of nonlinear problems of the Kirchhoff type given by L-epsilon (u) = H (u - beta) f (u) + u(2*-1 )in R-N, u is an element of H-1 (R-N) boolean AND W-2,W- q/q-1 (RN),W- where N >= 3, q is an element of (2, 2*), epsilon, beta > 0 are positive parameters, f : R -> R is a continuous function, H is the Heaviside function, i.e., H(t) = 0 if t <= 0, H(t) = 1 if t > 0 and L-epsilon(u) := [ M (1/epsilon(N-2) integral(RN) vertical bar del u vertical bar(2 )dx + 1/epsilon(N) integral(RN) V(x)vertical bar u vertical bar(2) dx)] [-epsilon(2 )Delta u + V (x) u]. The function M is a general continuous function. The function V is a positive potential that satisfies following hypothesis: or V satisfies the Palais-Smale condition or there is a bounded domain Omega in R-N such that V has no critical point in partial derivative Omega. Here we use a suitable truncation to apply a version of the penalization method of Del Pino and Felmer [16] combined with the Mountain Pass Theorem for locally Lipschitz functional.
引用
收藏
页码:987 / 1002
页数:16
相关论文
共 34 条
[1]  
Alves CO, 2011, J CONVEX ANAL, V18, P627
[2]   Existence of Standing Waves Solution for a Nonlinear Schrödinger Equation in RN [J].
Alves C.O. .
Journal of Elliptic and Parabolic Equations, 2015, 1 (2) :231-241
[3]   A variational approach to discontinuous problems with critical Sobolev exponents [J].
Alves, CO ;
Bertone, AM ;
Goncalves, JV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (01) :103-127
[4]  
[Anonymous], 1883, MECHANIK TEUBNER
[5]  
[Anonymous], 2009, Multiple Integrals in the Calculus of Variations
[6]  
Badiale M., 1993, DIFFERENTIAL INTEGRA, V6, P1173
[7]  
Badiale M., 1993, REND SEM MAT U POLIT, V51, P331
[8]   Multiplicity results for elliptic Kirchhoff-type problems [J].
Baraket, Sami ;
Bisci, Giovanni Molica .
ADVANCES IN NONLINEAR ANALYSIS, 2017, 6 (01) :85-93
[9]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[10]  
Chang K., 1978, COMMUN PUR APPL MATH, V33, P139