Proactive Monitoring and Classification of Stored Grain Condition via Wireless Sensor Networks and Machine Learning Techniques

被引:0
作者
Kanaan, Muzaffer [1 ]
Baykara, Canset Kocer [2 ]
机构
[1] Erciyes Univ, Dept Mechatron Engn, Kayseri, Turkey
[2] Turkish Grain Board TMO, Ankara, Turkey
来源
2018 2ND INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT) | 2018年
关键词
stored grain condition monitoring; wireless sensor network; machine learning; agriculture;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the problem of proactive, 24/7 monitoring of the condition of stored grain by means of a wireless sensor network infrastructure. Temperature and moisture measurements by means of such a network infrastructure can help in accurately classifying the condition of stored grain piles. We employ machine learning techniques, and neural networks in particular, to classify the stored grain condition. Our results indicate it is possible to accurately classify the condition of stored grain with approximately 99% accuracy through this approach.
引用
收藏
页码:218 / 221
页数:4
相关论文
共 9 条
[1]   Wireless sensor networks: a survey [J].
Akyildiz, IF ;
Su, W ;
Sankarasubramaniam, Y ;
Cayirci, E .
COMPUTER NETWORKS, 2002, 38 (04) :393-422
[2]  
Anami B. S., 2005, P INT C COGN REC, V15, P2885
[3]  
[Anonymous], 2010, INT J ENG SCI TECHNO
[4]  
Baykara C. K., 2018, THESIS, P51
[5]  
Dilay Y., 2012, IGDIR U J I SCI TECH, V2, P21
[6]  
LEACOX JD, 2007, SO NURS ASS RES C, V52
[7]   Long-Range Wireless Mesh Network for Weather Monitoring in Unfriendly Geographic Conditions [J].
Toledano-Ayala, Manuel ;
Herrera-Ruiz, Gilberto ;
Soto-Zarazua, Genaro M. ;
Rivas-Araiza, Edgar A. ;
Bazan Trujillo, Rey D. ;
Porras-Trejo, Rafael E. .
SENSORS, 2011, 11 (07) :7141-7161
[8]  
Ying Zhang, 2011, Proceedings 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM 2011), P29, DOI 10.1109/CDCIEM.2011.371
[9]  
2011, ENERG ED SCI TECH A, V28, P459