A sharp upper bound for the number of stable sets in graphs with given number of cut edges

被引:13
作者
Hua, Hongbo [1 ,2 ,3 ]
机构
[1] NW Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
[2] Huaiyin Inst Technol, Dept Comp Sci, Huaian 223003, Jiangsu, Peoples R China
[3] Huaiyin Inst Technol, Inst Appl Math, Huaian 223003, Jiangsu, Peoples R China
关键词
Stable set; Cut edge; 2-edge-connected graph; Upper bound; Extremal graph; FIBONACCI NUMBERS; INDEPENDENT SETS; INDEXES; TREES;
D O I
10.1016/j.aml.2009.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a connected and simple graph, and let i(G) denote the number of stable sets in G. In this letter, we have presented a sharp upper bound for the i(G)-value among the set of graphs with k cut edges for all possible values of k, and characterized the corresponding extremal graphs as well. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1380 / 1385
页数:6
相关论文
共 18 条
[1]  
Alameddine AF, 1998, FIBONACCI QUART, V36, P206
[2]  
Gutman I., 1990, Coll. Sci. Pap. Fac. Sci. Kragujevac, V11, P11
[3]  
Gutman I., 2012, MATH CONCEPTS ORGANI
[4]  
Gutman I., 1992, PUBL I MATH BEOGRAD, V52, P5
[5]  
HUA H, CACTI GIVEN PE UNPUB
[6]  
LI X, 1996, AUSTRALASIAN J COMB, V14, P15
[7]  
Li X., 2005, MATCH COMMUN MATH CO, V54
[8]   The inverse problems for some topological indices in combinatorial chemistry [J].
Li, XL ;
Li, ZM ;
Wang, LS .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (01) :47-55
[9]  
Lin C., 1995, CHIN J MATH, V23, P199
[10]   BIPARTITE GRAPHS CAN HAVE ANY NUMBER OF INDEPENDENT SETS [J].
LINEK, V .
DISCRETE MATHEMATICS, 1989, 76 (02) :131-136