Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds

被引:327
作者
Liu, Xiaohua [1 ]
Ma, Peter X. [1 ,2 ,3 ]
机构
[1] Univ Michigan, Dept Biol & Mat Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Ctr Macromol Sci & Engn, Ann Arbor, MI 48109 USA
关键词
Gelatin; Collagen; Tissue engineering; Regenerative medicine; Nanofiber; Porous materials; POLY(L-LACTIC ACID) SCAFFOLDS; WATER-SOLUBLE CARBODIIMIDE; CROSS-LINKING; IN-VITRO; EXTRACELLULAR-MATRIX; COLLAGEN; REGENERATION; BIOMATERIALS; DEGRADATION; HYDROGEL;
D O I
10.1016/j.biomaterials.2009.04.024
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The development of three-dimensional (3D) biomimetic scaffolds which provide an optimal environment for cells adhesion, proliferation and differentiation, and guide new tissue formation has been one of the major goals in tissue engineering. In this work, a processing technique has been developed to create 3D nanofibrous gelatin (NF-gelatin) scaffolds, which mimic both the physical architecture and the chemical composition of natural collagen. Gelatin matrices with nanofibrous architecture were first created by using a thermally induced phase separation (TIPS) technique. Macroporous NF-gelatin scaffolds were fabricated by combining the TIPS technique with a porogen-leaching process. The processing parameters were systematically investigated in relation to the fiber diameter, fiber length, surface area, porosity, pore size, interpore connectivity, pore wall architecture, and mechanical properties of the NF-gelatin scaffolds. The resulting NF-gelatin scaffolds possess high surface areas (>32 m(2)/g), high porosities (>96%), well-connected macropores, and nanofibrous pore wall structures. The technique advantageously controls macropore shape and size by paraffin spheres, interpore connectivity by assembly conditions (time and temperature of heat treatment), pore wall morphology by phase separation and post-treatment parameters, and mechanical properties by polymer concentration and crosslinking density. Compared to commercial gelatin foam (Gelfoam(R)), the NF-gelatin scaffold showed much better dimensional stability in a tissue culture environment. The NF-gelatin scaffolds, therefore, are excellent scaffolds for tissue engineering.(C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4094 / 4103
页数:10
相关论文
共 40 条
[1]  
Bognitzki M, 2001, ADV MATER, V13, P70, DOI 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.3.CO
[2]  
2-8
[3]   Bone regeneration on computer-designed nano-fibrous scaffolds [J].
Chen, VJ ;
Smith, LA ;
Ma, PX .
BIOMATERIALS, 2006, 27 (21) :3973-3979
[4]   The effect of surface area on the degradation rate of nano-fibrous poly(L-lactic acid) foams [J].
Chen, VJ ;
Ma, PX .
BIOMATERIALS, 2006, 27 (20) :3708-3715
[5]   Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores [J].
Chen, VJ ;
Ma, PX .
BIOMATERIALS, 2004, 25 (11) :2065-2073
[6]   Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge [J].
Choi, YS ;
Hong, SR ;
Lee, YM ;
Song, KW ;
Park, MH ;
Nam, YS .
BIOMATERIALS, 1999, 20 (05) :409-417
[7]   In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide [J].
Damink, LHHO ;
Dijkstra, PJ ;
vanLuyn, MJA ;
vanWachem, PB ;
Nieuwenhuis, P ;
Feijen, J .
BIOMATERIALS, 1996, 17 (07) :679-684
[8]   CROSS-LINKING OF GELATIN CAPSULES AND ITS RELEVANCE TO THEIR IN-VITRO IN-VIVO PERFORMANCE [J].
DIGENIS, GA ;
GOLD, TB ;
SHAH, VP .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1994, 83 (07) :915-921
[9]  
Du C, 1999, J BIOMED MATER RES, V44, P407, DOI 10.1002/(SICI)1097-4636(19990315)44:4<407::AID-JBM6>3.0.CO
[10]  
2-T