Clifford-Finsler algebroids and nonholonomic Einstein-Dirac structures

被引:20
作者
Vacaru, Sergiu I. [1 ]
机构
[1] Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada
关键词
D O I
10.1063/1.2339016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a new framework for constructing geometric and physical models on nonholonomic manifold provided both with Clifford-Lie algebroid symmetry and nonlinear connection structure. Explicit parametrizations of generic off-diagonal metrics and linear and nonlinear connections define different types of Finsler, Lagrange, and/or Riemann-Cartan spaces. A generalization to spinor fields and Dirac operators on nonholonomic manifolds motivates the theory of Clifford algebroids defined as Clifford bundles, in general, enabled with nonintegrable distributions defining the nonlinear connection. In this work, we elaborate the algebroid spinor differential geometry and formulate the (scalar, Proca, graviton, spinor, and gauge) field equations on Lie algebroids. The paper communicates new developments in geometrical formulation of physical theories and this approach is grounded on a number of previous examples when exact solutions with generic off-diagonal metrics and generalized symmetries in modern gravity define nonholonomic spacetime manifolds with uncompactified extra dimensions. (c) 2006 American Institute of Physics.
引用
收藏
页数:20
相关论文
共 29 条
[1]   NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW D, 1987, 36 (06) :1587-1602
[2]  
da Silva A., 1999, Geometric models for noncommutative algebras (Berkeley mathematics lecture notes)
[3]  
DELEON M, MATHDG0407528
[4]   Lagrange-Fedosov nonholonomic manifolds -: art. no. 032901 [J].
Etayo, F ;
Santamaría, R ;
Vacaru, SI .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (03)
[5]  
Gracia-Bondia Jose M., 2001, ELEMENTS NONCOMMUTAT
[6]   LAGRANGE GEOMETRY [J].
KERN, J .
ARCHIV DER MATHEMATIK, 1974, 25 (04) :438-443
[7]  
Libermann P., 1996, ARCH MATH-BRNO, V32, P147
[8]   SPINOR CONNECTIONS IN GENERAL RELATIVITY [J].
LUEHR, CP ;
ROSENBAUM, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (07) :1120-1137
[9]   Lagrangian mechanics on Lie algebroids [J].
Martínez, E .
ACTA APPLICANDAE MATHEMATICAE, 2001, 67 (03) :295-320
[10]  
Miron R., 1994, GEOMETRY LAGRANGE SP