We present numerical solutions to the extended Doering-Constantin variational principle for upper bounds on the energy dissipation rate in plane Couette flow, bridging the entire range from low to asymptotically high Reynolds numbers. Our variational bound exhibits structure, namely a pronounced minimum at intermediate Reynolds numbers, and recovers the Busse bound in the asymptotic regime. The most notable feature is a bifurcation of the minimizing wave numbers, giving rise to simple scaling of the optimized variational parameters, and of the upper bound, with the Reynolds number.
机构:
Los Alamos Natl Lab, Los Alamos, NM 87544 USALos Alamos Natl Lab, Los Alamos, NM 87544 USA
Rollin, B.
Dubief, Y.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vermont, Sch Engn, Burlington, VT 05405 USALos Alamos Natl Lab, Los Alamos, NM 87544 USA
Dubief, Y.
Doering, C. R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Phys, Dept Math, Ann Arbor, MI 48109 USA
Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USALos Alamos Natl Lab, Los Alamos, NM 87544 USA