Accuracy calculation for lidar ratio and aerosol size distribution by dual-wavelength lidar

被引:13
作者
Cao, Nianwen [1 ]
Yang, Sipeng [1 ]
Cao, Shujie [1 ,2 ]
Yang, Shaobo [1 ]
Shen, Ji [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Nanjing, Jiangsu, Peoples R China
[2] Shanghai Tech Univ, Shanghai, Peoples R China
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2019年 / 125卷 / 09期
关键词
MULTIWAVELENGTH LIDAR; RETRIEVAL; PARAMETERS; INVERSION; TURBIDITY; SIGNALS;
D O I
10.1007/s00339-019-2819-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a method to obtain aerosol-lidar ratio and particle-size distribution simultaneously with a dual-wavelength lidar, when the aerosol particle-size distribution is to be approximated by a Junge distribution. The manuscript analyzed the relationship between the aerosol particle ratio, particle-size distribution, and particle complex refractive index. The results show that the particle properties have a great impact on the lidar ratio. If the selected lidar ratio is not suitable, the extinction coefficient obtained from the Fernald method will cause a great uncertainty in the inversion of particle-size distribution. A lidar-ratio iteration method was introduced to solve the influence of improper lidar-ratio selection on particle-size distribution inversion, and then conducted simulation calculations and analysis. The simulation results show that the lidar-ratio iteration method effectively solves the problem of uncomfortable lidar ratio, and can obtain relatively accurate lidar ratio and particle-size distribution parameters at the same time; the uncertainty of iteration method was discussed in the manuscript.
引用
收藏
页数:10
相关论文
共 26 条
[1]   THE PARAMETERS OF ATMOSPHERIC TURBIDITY [J].
ANGSTROM, A .
TELLUS, 1964, 16 (01) :64-75
[2]   TECHNIQUES OF DETERMINIG THE TURBIDITY OF THE ATMOSPHERE [J].
ANGSTROM, A .
TELLUS, 1961, 13 (02) :214-223
[3]   ANALYSIS OF THE RELATIONSHIPS BETWEEN JUNGE SIZE DISTRIBUTION AND ANGSTROM-ALPHA TURBIDITY PARAMETERS FROM SPECTRAL MEASUREMENTS OF ATMOSPHERIC AEROSOL EXTINCTION [J].
CACHORRO, VE ;
DEFRUTOS, AM ;
GONZALEZ, MJ .
ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1993, 27 (10) :1585-1591
[4]   Applying Advanced Ground-Based Remote Sensing in the Southeast Asian Maritime Continent to Characterize Regional Proficiencies in Smoke Transport Modeling [J].
Campbell, James R. ;
Ge, Cui ;
Wang, Jun ;
Welton, Ellsworth J. ;
Bucholtz, Anthony ;
Hyer, Edward J. ;
Reid, Elizabeth A. ;
Chew, Boon Ning ;
Liew, Soo-Chin ;
Salinas, Santo V. ;
Lolli, Simone ;
Kaku, Kathleen C. ;
Lynch, Peng ;
Mahmud, Mastura ;
Mohamad, Maznorizan ;
Holben, Brent N. .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2016, 55 (01) :3-22
[5]   Atmospheric correction of ocean color imagery: use of the Junge power-law aerosol size distribution with variable refractive index to handle aerosol absorption [J].
Chomko, RM ;
Gordon, HR .
APPLIED OPTICS, 1998, 37 (24) :5560-5572
[6]  
D'Almeida GA, 1991, ATMOSPHERIC AEROSOLS, P25
[7]   Multiwavelength lidar for determination of the atmospheric aerosol size distribution [J].
Ernst, K ;
Chudzynski, S ;
Karasinski, G ;
Pietruczuk, A ;
Stacewicz, T .
LASER TECHNOLOGY VII: APPLICATIONS OF LASERS, 2003, 5229 :45-50
[8]  
FITZGERALD JW, 1979, J APPL METEOROL, V18, P931, DOI 10.1175/1520-0450(1979)018<0931:AFTCIE>2.0.CO
[9]  
2
[10]   Particle size distribution retrieval from multiwavelength lidar signals for droplet aerosol [J].
Jagodnicka, Anna K. ;
Stacewicz, Tadeusz ;
Karasinski, Grzegorz ;
Posyniak, Michal ;
Malinowski, Szymon P. .
APPLIED OPTICS, 2009, 48 (04) :B8-B16