Artificial Intelligence for Early Detection of Chest Nodules in X-ray Images

被引:8
|
作者
Chiu, Hwa-Yen [1 ,2 ,3 ,4 ]
Peng, Rita Huan-Ting [2 ]
Lin, Yi-Chian [2 ]
Wang, Ting-Wei [2 ]
Yang, Ya-Xuan [2 ]
Chen, Ying-Ying [1 ,5 ]
Wu, Mei-Han [4 ,6 ,7 ]
Shiao, Tsu-Hui [1 ,4 ]
Chao, Heng-Sheng [1 ,8 ]
Chen, Yuh-Min [1 ,4 ]
Wu, Yu-Te [2 ,9 ]
机构
[1] Taipei Vet Gen Hosp, Dept Chest Med, Taipei 112, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Inst Biophoton, Taipei 112, Taiwan
[3] Hsinchu Branch, Taipei Vet Gen Hosp, Div Internal Med, Hsinchu 310, Taiwan
[4] Natl Yang Ming Chiao Tung Univ, Sch Med, Taipei 112, Taiwan
[5] Taiwan Adventist Hosp, Dept Crit Care Med, Taipei 105, Taiwan
[6] Cheng Hsin Gen Hosp, Dept Med Imaging, Taipei 112, Taiwan
[7] Taipei Vet Gen Hosp, Dept Radiol, Taipei 112, Taiwan
[8] Natl Yang Ming Chiao Tung Univ, Inst Biomed Informat, Taipei 112, Taiwan
[9] Natl Yang Ming Chiao Tung Univ, Brain Res Ctr, Taipei 112, Taiwan
关键词
artificial intelligence; AI; detection; lung cancer; machine learning; COMPUTER-AIDED DETECTION; LUNG-CANCER; RADIOGRAPHS; DIAGNOSIS; PROGNOSIS; SYSTEM;
D O I
10.3390/biomedicines10112839
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Early detection increases overall survival among patients with lung cancer. This study formulated a machine learning method that processes chest X-rays (CXRs) to detect lung cancer early. After we preprocessed our dataset using monochrome and brightness correction, we used different kinds of preprocessing methods to enhance image contrast and then used U-net to perform lung segmentation. We used 559 CXRs with a single lung nodule labeled by experts to train a You Only Look Once version 4 (YOLOv4) deep-learning architecture to detect lung nodules. In a testing dataset of 100 CXRs from patients at Taipei Veterans General Hospital and 154 CXRs from the Japanese Society of Radiological Technology dataset, the sensitivity of the AI model using a combination of different preprocessing methods performed the best at 79%, with 3.04 false positives per image. We then tested the AI by using 383 sets of CXRs obtained in the past 5 years prior to lung cancer diagnoses. The median time from detection to diagnosis for radiologists assisted with AI was 46 (3-523) days, longer than that for radiologists (8 (0-263) days). The AI model can assist radiologists in the early detection of lung nodules.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Detection of Lung Lesions in Chest X-ray Images based on Artificial Intelligence
    Wei, Chuan-Yi
    Ou, Chih-Ying
    Chen, I-Yen
    Chang, Hsuan-Ting
    2022 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN, IEEE ICCE-TW 2022, 2022, : 173 - 174
  • [2] EARLY X-RAY IMAGES OF THE CHEST
    PASVEER, B
    SCIENCE TECHNOLOGY & HUMAN VALUES, 1988, 13 (1-2) : 166 - 167
  • [3] Chest X-ray Foreign Objects Detection Using Artificial Intelligence
    Kufel, Jakub
    Bargiel-Laczek, Katarzyna
    Kozlik, Maciej
    Czogalik, Lukasz
    Dudek, Piotr
    Magiera, Mikolaj
    Bartnikowska, Wiktoria
    Lis, Anna
    Paszkiewicz, Iga
    Kocot, Szymon
    Cebula, Maciej
    Gruszczynska, Katarzyna
    Nawrat, Zbigniew
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (18)
  • [4] Artificial Intelligence Based COVID-19 Detection and Classification Model on Chest X-ray Images
    Althaqafi, Turki
    AL-Ghamdi, Abdullah S. AL-Malaise
    Ragab, Mahmoud
    HEALTHCARE, 2023, 11 (09)
  • [5] Diagnostic performance of an artificial intelligence model for the detection of pneumothorax at chest X-ray
    Monti, Caterina Beatrice
    Bianchi, Lorenzo Maria Giuseppe
    Rizzetto, Francesco
    Carbonaro, Luca Alessandro
    Vanzulli, Angelo
    CLINICAL IMAGING, 2025, 117
  • [6] COVID-19 Detection on Chest X-ray Images with the Proposed Model Using Artificial Intelligence and Classifiers
    Yildirim, Muhammed
    Eroglu, Orkun
    Eroglu, Yesim
    Cinar, Ahmet
    Cengil, Emine
    NEW GENERATION COMPUTING, 2022, 40 (04) : 1077 - 1091
  • [7] COVID-19 Detection on Chest X-ray Images with the Proposed Model Using Artificial Intelligence and Classifiers
    Muhammed Yildirim
    Orkun Eroğlu
    Yeşim Eroğlu
    Ahmet Çinar
    Emine Cengil
    New Generation Computing, 2022, 40 : 1077 - 1091
  • [8] Explainable artificial intelligence in deep learning-based detection of aortic elongation on chest X-ray images
    Ribeiro, Estela
    Cardenas, Diego A. C.
    Dias, Felipe M.
    Krieger, Jose E.
    Gutierrez, Marco A.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (05): : 524 - 534
  • [9] Detection of pulmonary nodules on chest X-ray images using R-CNN
    Takemiya, R.
    Kido, S.
    Hirano, Y.
    Mabu, S.
    INTERNATIONAL FORUM ON MEDICAL IMAGING IN ASIA 2019, 2019, 11050
  • [10] Automated Detection of Lung Nodules Using HOG Technique with Chest X-Ray Images
    Raghavendra, U.
    Gudigar, Anjan
    Rao, Tejaswi N.
    Fujita, Hamido
    Acharya, U. Rajendra
    NEW TRENDS IN INTELLIGENT SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES (SOMET_18), 2018, 303 : 1018 - 1026