Artificial Intelligence for Early Detection of Chest Nodules in X-ray Images

被引:11
作者
Chiu, Hwa-Yen [1 ,2 ,3 ,4 ]
Peng, Rita Huan-Ting [2 ]
Lin, Yi-Chian [2 ]
Wang, Ting-Wei [2 ]
Yang, Ya-Xuan [2 ]
Chen, Ying-Ying [1 ,5 ]
Wu, Mei-Han [4 ,6 ,7 ]
Shiao, Tsu-Hui [1 ,4 ]
Chao, Heng-Sheng [1 ,8 ]
Chen, Yuh-Min [1 ,4 ]
Wu, Yu-Te [2 ,9 ]
机构
[1] Taipei Vet Gen Hosp, Dept Chest Med, Taipei 112, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Inst Biophoton, Taipei 112, Taiwan
[3] Hsinchu Branch, Taipei Vet Gen Hosp, Div Internal Med, Hsinchu 310, Taiwan
[4] Natl Yang Ming Chiao Tung Univ, Sch Med, Taipei 112, Taiwan
[5] Taiwan Adventist Hosp, Dept Crit Care Med, Taipei 105, Taiwan
[6] Cheng Hsin Gen Hosp, Dept Med Imaging, Taipei 112, Taiwan
[7] Taipei Vet Gen Hosp, Dept Radiol, Taipei 112, Taiwan
[8] Natl Yang Ming Chiao Tung Univ, Inst Biomed Informat, Taipei 112, Taiwan
[9] Natl Yang Ming Chiao Tung Univ, Brain Res Ctr, Taipei 112, Taiwan
关键词
artificial intelligence; AI; detection; lung cancer; machine learning; COMPUTER-AIDED DETECTION; LUNG-CANCER; RADIOGRAPHS; DIAGNOSIS; PROGNOSIS; SYSTEM;
D O I
10.3390/biomedicines10112839
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Early detection increases overall survival among patients with lung cancer. This study formulated a machine learning method that processes chest X-rays (CXRs) to detect lung cancer early. After we preprocessed our dataset using monochrome and brightness correction, we used different kinds of preprocessing methods to enhance image contrast and then used U-net to perform lung segmentation. We used 559 CXRs with a single lung nodule labeled by experts to train a You Only Look Once version 4 (YOLOv4) deep-learning architecture to detect lung nodules. In a testing dataset of 100 CXRs from patients at Taipei Veterans General Hospital and 154 CXRs from the Japanese Society of Radiological Technology dataset, the sensitivity of the AI model using a combination of different preprocessing methods performed the best at 79%, with 3.04 false positives per image. We then tested the AI by using 383 sets of CXRs obtained in the past 5 years prior to lung cancer diagnoses. The median time from detection to diagnosis for radiologists assisted with AI was 46 (3-523) days, longer than that for radiologists (8 (0-263) days). The AI model can assist radiologists in the early detection of lung nodules.
引用
收藏
页数:15
相关论文
共 41 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]  
ARAI T, 1994, JPN J CLIN ONCOL, V24, P199
[3]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[4]  
Bochkovskiy A, 2020, Arxiv, DOI arXiv:2004.10934
[5]   A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients [J].
Bove, Samantha ;
Comes, Maria Colomba ;
Lorusso, Vito ;
Cristofaro, Cristian ;
Didonna, Vittorio ;
Gatta, Gianluca ;
Giotta, Francesco ;
La Forgia, Daniele ;
Latorre, Agnese ;
Pastena, Maria Irene ;
Petruzzellis, Nicole ;
Pomarico, Domenico ;
Rinaldi, Lucia ;
Tamborra, Pasquale ;
Zito, Alfredo ;
Fanizzi, Annarita ;
Massafra, Raffaella .
SCIENTIFIC REPORTS, 2022, 12 (01)
[6]  
Bradley S., 2018, BR J GEN PRACT, V68, DOI DOI 10.3399/BJGP18X696905
[7]  
Bradski G., 2008, LEARNING OPENCV COMP
[8]   This Week in the Journal [J].
de Koning, H. J. ;
van der Aalst, C. M. ;
de Jong, P. A. ;
Scholten, E. T. ;
Nackaerts, K. ;
Heuvelmans, M. A. ;
Lammers, J. -W. J. ;
Weenink, C. ;
Yousaf-Khan, U. ;
Horeweg, N. ;
van't Westeinde, S. ;
Prokop, M. ;
Mali, W. P. ;
Hoesein, F. A. A. Mohamed ;
van Ooijen, P. M. A. ;
Aerts, J. G. J. V. ;
den Bakker, M. A. ;
Thunnissen, E. ;
Verschakelen, J. ;
Vliegenthart, R. ;
Walter, J. E. ;
ten Haaf, K. ;
Groen, H. J. M. ;
Oudkerk, M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (06) :503-513
[9]   A generalized gamma correction algorithm based on the SLIP model [J].
Deng, Guang .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2016,
[10]   Pre-processing methods in chest X-ray image classification [J].
Gielczyk, Agata ;
Marciniak, Anna ;
Tarczewska, Martyna ;
Lutowski, Zbigniew .
PLOS ONE, 2022, 17 (04)