Graphene-polymer nanocomposites for structural and functional applications

被引:889
作者
Hu, Kesong [1 ]
Kulkarni, Dhaval D. [1 ]
Choi, Ikjun [1 ]
Tsukruk, Vladimir V. [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Graphene materials; Polymer interfaces; Flexible nanocomposites; Mechanical performance; Conductive polymer nanocomposites; POLYANILINE/GRAPHITE OXIDE NANOCOMPOSITES; LAYERED DOUBLE HYDROXIDE; HOLE TRANSPORT LAYER; IN-SITU PREPARATION; CARBON-NANOTUBE; MECHANICAL-PROPERTIES; GRAPHITE OXIDE; HIGH-PERFORMANCE; ELASTIC PROPERTIES; COMPOSITE FILMS;
D O I
10.1016/j.progpolymsci.2014.03.001
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The introduction of graphene-based nanomaterials has prompted the development of flexible nanocomposites for emerging applications in need of superior mechanical, thermal, electrical, optical, and chemical performance. These nanocomposites exhibit outstanding structural performance and multifunctional properties by synergistically combining the characteristics of both components if proper structural and interfacial organization is achieved. Here, we briefly introduce the material designs and basic interfacial interactions in the graphene-polymer nanocomposites and the corresponding theoretical models for predicting the mechanical performances of such nanocomposites. Then, we discuss various assembly techniques available for effectively incorporating the strong and flexible graphene-based components into polymer matrices by utilization of weak and strong interfacial interactions available in functionalized graphene sheets. We discuss mechanical performance and briefly summarize other physical (thermal, electrical, barrier, and optical) properties, which are controlled by processing conditions and interfacial interactions. Finally, we present a brief outlook of the developments in graphene-based polymer nanocomposites by discussing the major progress, opportunities, and challenges. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1934 / 1972
页数:39
相关论文
共 307 条
[1]  
Adamson A.W., 1990, Physical Chemistry of Surfaces
[2]  
Agarwal B.D., 2006, Analysis and performance of fiber composites, VThird
[3]  
Ajayan P.M., 2006, Nanocomposite science and technology
[4]   High efficiency solid state dye sensitized solar cells with graphene-polyethylene oxide composite electrolytes [J].
Akhtar, M. Shaheer ;
Kwon, SoonJi ;
Stadler, Florian J. ;
Yang, O. Bong .
NANOSCALE, 2013, 5 (12) :5403-5411
[5]   Graphene/Polyaniline Nanocomposite for Hydrogen Sensing [J].
Al-Mashat, Laith ;
Shin, Koo ;
Kalantar-zadeh, Kourosh ;
Plessis, Johan D. ;
Han, Seung H. ;
Kojima, Robert W. ;
Kaner, Richard B. ;
Li, Dan ;
Gou, Xinglong ;
Ippolito, Samuel J. ;
Wlodarski, Wojtek .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39) :16168-16173
[6]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[7]   Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization [J].
Alzari, Valeria ;
Nuvoli, Daniele ;
Scognamillo, Sergio ;
Piccinini, Massimo ;
Gioffredi, Emilia ;
Malucelli, Giulio ;
Marceddu, Salvatore ;
Sechi, Mario ;
Sanna, Vanna ;
Mariani, Alberto .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (24) :8727-8733
[8]   Lithium Aluminum Hydride as Reducing Agent for Chemically Reduced Graphene Oxides [J].
Ambrosi, Adriano ;
Chua, Chun Kiang ;
Bonanni, Alessandra ;
Pumera, Martin .
CHEMISTRY OF MATERIALS, 2012, 24 (12) :2292-2298
[9]   Bio-lnspired Borate Cross-Linking in Ultra-Stiff Graphene Oxide Thin Films [J].
An, Zhi ;
Compton, Owen C. ;
Putz, Karl W. ;
Brinson, L. Catherine ;
Nguyen, SonBinh T. .
ADVANCED MATERIALS, 2011, 23 (33) :3842-+
[10]   Flexible ITO-Free Polymer Solar Cells [J].
Angmo, Dechan ;
Krebs, Frederik C. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 129 (01) :1-14