Rough fractional integrals and its commutators on variable Morrey spaces

被引:9
作者
Tan, Jian [1 ]
Zhao, Jiman [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Key Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
HARDY-SPACES; OPERATORS;
D O I
10.1016/j.crma.2015.09.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors obtain the boundedness of fractional integrals with rough kernel on variable Morrey spaces. The corresponding boundedness for commutators generalized by the fractional integral and BMO function is also considered. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1117 / 1122
页数:6
相关论文
共 18 条
  • [1] Capone C, 2007, REV MAT IBEROAM, V23, P743
  • [2] Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
  • [3] Variable Hardy Spaces
    Cruz-Uribe, David
    Wang, Li-An Daniel
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (02) : 447 - 493
  • [4] CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
  • [5] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +
  • [6] Some properties of fractional integrals I
    Hardy, GH
    Littlewood, JE
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1928, 27 : 565 - 606
  • [7] THE FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES WITH VARIABLE EXPONENT ON UNBOUNDED DOMAINS
    Ho, Kwok-Pun
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (02): : 363 - 373
  • [8] Ho KP, 2012, ANAL MATH, V38, P173, DOI 10.1007/s10476-012-0302-5
  • [9] Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent
    Izuki M.
    [J]. Rendiconti del Circolo Matematico di Palermo, 2010, 59 (3) : 461 - 472
  • [10] KOVACIK O, 1991, CZECH MATH J, V41, P592