Dynamic optimization of a hybrid solar thermal and fossil fuel system

被引:55
作者
Powell, Kody M. [1 ]
Hedengren, John D. [2 ]
Edgar, Thomas F. [1 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
[2] Brigham Young Univ, Dept Chem Engn, Provo, UT 84602 USA
关键词
Dynamic optimization; Hybrid solar thermal systems; Thermal energy storage; ENERGY-STORAGE; POWER-PLANTS; COLLECTOR FIELDS; CONTROL SCHEMES; COMBINED-CYCLE; GAS-TURBINE; TECHNOLOGIES; PERFORMANCE; STRATEGIES; DESIGN;
D O I
10.1016/j.solener.2014.07.004
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This work illustrates the synergy that exists between solar thermal and fossil fuel energy systems. By adding degrees of freedom and optimizing the system, more solar energy can be harvested by operating in a "hybrid" mode, where a portion of the demand is met by solar energy, with the remainder provided by a supplemental fuel, such as natural gas. This requires allowing temperatures in the solar field and storage tanks to vary, permitting the system to meet the demand by a combination of solar and fossil energy, rather than one or the other, and by allowing the heat transfer fluid to bypass storage. The addition of thermal energy storage provides the opportunity for dynamic optimization, where the degrees of freedom can be exploited over the entire time horizon to yield optimal results: maximizing the total amount of solar energy harvested. The problem is solved using a simultaneous solution method that concurrently minimizes the objective function and solves the system's constraints. This methodology is demonstrated on a parabolic trough solar thermal plant with a two-tank-direct thermal energy storage system. Results show that 9% more solar energy can be harvested on a sunny day by using this methodology. On a day with intermittent sunlight, 49% more solar energy can be harvested with the same system. Dynamic optimization enables more cost effective solar integration in areas with lower or intermittent sources of solar incidence. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:210 / 218
页数:9
相关论文
共 30 条
[1]   Thermal performance prediction of a solar hybrid gas turbine [J].
Barigozzi, G. ;
Bonetti, G. ;
Franchini, G. ;
Perdichizzi, A. ;
Ravelli, S. .
SOLAR ENERGY, 2012, 86 (07) :2116-2127
[2]   Innovation in concentrated solar power [J].
Barlev, David ;
Vidu, Ruxandra ;
Stroeve, Pieter .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (10) :2703-2725
[3]   MPEC problem formulations and solution strategies with chemical engineering applications [J].
Baumrucker, B. T. ;
Renfro, J. G. ;
Biegler, L. T. .
COMPUTERS & CHEMICAL ENGINEERING, 2008, 32 (12) :2903-2913
[4]   MPEC strategies for optimization of a class of hybrid dynamic systems [J].
Baumrucker, B. T. ;
Biegler, L. T. .
JOURNAL OF PROCESS CONTROL, 2009, 19 (08) :1248-1256
[5]   An overview of simultaneous strategies for dynamic optimization [J].
Biegler, Lorenz T. .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2007, 46 (11) :1043-1053
[6]   A survey on control schemes for distributed solar collector fields. Part II: Advanced control approaches [J].
Camacho, E. F. ;
Rubio, F. R. ;
Berenguel, M. ;
Valenzuela, L. .
SOLAR ENERGY, 2007, 81 (10) :1252-1272
[7]   A survey on control schemes for distributed solar collector fields. Part 1: Modeling and basic control approaches [J].
Camacho, E. F. ;
Rubio, F. R. ;
Berenguel, M. ;
Valenzuela, L. .
SOLAR ENERGY, 2007, 81 (10) :1240-1251
[8]   Performance and cost assessment of Integrated Solar Combined Cycle Systems (ISCCSs) using CO2 as heat transfer fluid [J].
Cau, Giorgio ;
Cocco, Daniele ;
Tola, Vittorio .
SOLAR ENERGY, 2012, 86 (10) :2975-2985
[9]   Adaptative state-space model predictive control of a parabolic-trough field [J].
Gallego, A. J. ;
Camacho, E. F. .
CONTROL ENGINEERING PRACTICE, 2012, 20 (09) :904-911
[10]  
Galvez-Carrillo M., 2009, SOL ENERGY, V83, P743