Reducing the Cut-In Voltage of a Silicon Carbide/p-Silicon Heterojunction Diode Using Femtosecond Laser Ablation

被引:11
作者
Ali, Asghar [1 ,2 ]
Piatkowski, Piotr A. [1 ,2 ]
Alawadhi, Hussain [3 ,4 ]
Alnaser, Ali S. [1 ,2 ]
机构
[1] Amer Univ Sharjah, Dept Phys, Sharjah, U Arab Emirates
[2] Amer Univ Sharjah, Coll Arts & Sci, Mat Sci & Engn Program, Sharjah, U Arab Emirates
[3] Univ Sharjah, Dept Appl Phys & Astron, Sharjah, U Arab Emirates
[4] Univ Sharjah, Ctr Adv Mat Res, Sharjah, U Arab Emirates
关键词
femtosecond laser; hydrogenation; nanocrystalline; silicon carbide; silicon; heterojunction diode; cut-in voltage; SIC THIN-FILMS; BIPOLAR-TRANSISTORS; NANOCRYSTALS; FABRICATION; SURFACES;
D O I
10.1021/acsaelm.2c01204
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report on the fabrication of a low-cut-in voltage (a-SiC:H/Si) heterojunction diode using femtosecond laser ablation of silicon wafers in an octane environment. The femtosecond laser-induced plasma simultaneously reduces, carbu-rizes, and hydrogenates the p-type silicon to develop a layer of hydrogenated silicon carbide (a-SiC:H) on top of the p-Si substrate. No reactive gases, source targets, dopants, or diffusion furnaces are required. The obtained current-voltage characteristics of the a-SiC:H/Si diode exhibit a cut-in voltage of 0.16 V, which is significantly lower than the rise potential of a typical SiC Schottky diode (0.75-1.6 eV) or the barrier potential (0.9-1 eV) of a typical p-Si/n-SiC diode. Moreover, this value is far less than the standard cut-in voltage of Si (0.7 V), or the typical body diode SiC MOSFETs (similar to 3 V). The achieved low cut-in voltage and the modest rectification ratio of the femtosecond laser-fabricated heterojunction diode demonstrate the promising potential of a rapid, facile, and cost-effective method for manufacturing efficient electronic devices.
引用
收藏
页码:6076 / 6086
页数:11
相关论文
共 55 条
  • [1] Aguilar J, 2001, J MICROWAVE POWER EE, V36, P169
  • [2] Raman scattering in mosaic silicon carbide films
    Aksyanov, I. G.
    Kompan, M. E.
    Kul'kova, I. V.
    [J]. PHYSICS OF THE SOLID STATE, 2010, 52 (09) : 1850 - 1854
  • [3] [Anonymous], Silicon carbide diodes
  • [4] Novel Si/SiC heterojunction lateral double-diffused metal oxide semiconductor field effect transistor with low specific on-resistance by super junction layer
    Duan, Baoxing
    Wang, Li
    Yang, Yintang
    [J]. MICRO AND NANOSTRUCTURES, 2022, 168
  • [5] Recent developments in the photodetector applications of Schottky diodes based on 2D materials
    Ezhilmaran, Bhuvaneshwari
    Patra, Abhinandan
    Benny, Stenny
    Sreelakshmi, M. R.
    Akshay, V. V.
    Bhat, S. Venkataprasad
    Rout, Chandra Sekhar
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (19) : 6122 - 6150
  • [6] Formation of Titanium Nitride, Titanium Carbide, and Silicon Carbide Surfaces by High Power Femtosecond Laser Treatment
    Fedorov, Rostislav
    Lederle, Felix
    Li, Mingji
    Olszok, Vinzent
    Woebbeking, Karl
    Schade, Wolfgang
    Huebner, Eike G.
    [J]. CHEMPLUSCHEM, 2021, 86 (09): : 1231 - 1242
  • [7] Silicon carbide: from amorphous to crystalline material
    Foti, G
    [J]. APPLIED SURFACE SCIENCE, 2001, 184 (1-4) : 20 - 26
  • [8] Nitrogen doping of SiC thin films deposited by RF magnetron sputtering
    Fraga, Mariana Amorim
    Massi, Marcos
    Oliveira, Ivo C.
    Maciel, Homero S.
    dos Santos Filho, Sebastiao G.
    Mansano, Ronaldo D.
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2008, 19 (8-9) : 835 - 840
  • [9] Highly-doped SiC resonator with ultra-large tuning frequency range by Joule heating effect
    Guzman, Pablo
    Toan Dinh
    Hoang-Phuong Phan
    Joy, Abbin Perunnilathil
    Qamar, Afzaal
    Bahreyni, Behraad
    Zhu, Yong
    Rais-Zadeh, Mina
    Li, Huaizhong
    Nam-Trung Nguyen
    Dzung Viet Dao
    [J]. MATERIALS & DESIGN, 2020, 194 (194)
  • [10] Hattori T., 1998, Ultraclean surface processing of silicon wafers. Secrets of VLSI manufacturing, P543