Optimizing the maximum Lyapunov exponent and phase space portraits in multi-scroll chaotic oscillators

被引:52
作者
Gerardo de la Fraga, Luis [1 ]
Tlelo-Cuautle, Esteban [2 ]
机构
[1] Cinvestav, Dept Comp Sci, Mexico City 07360, DF, Mexico
[2] INAOE, Luis Enrique Erro 1, Dept Elect, Cholula 72840, PUE, Mexico
关键词
Chaotic oscillator; Multiobjective optimization; Phase space portrait; Multiscroll; Maximum Lyapunov exponent; SYNCHRONIZATION; 2D;
D O I
10.1007/s11071-013-1224-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This investigation introduces the application of the nondominated sorting genetic algorithm to optimize two characteristics of multiscroll chaotic oscillators: (a) Maximizing the values of the maximum Lyapunov exponent (MLE), and (b) minimizing the dispersions of the phase space portraits (PSP) among all scrolls in an attractor. As shown in this study, these two oscillator's characteristics are in conflict and must be considered at the same time. The cases of study are two multiscroll chaotic oscillators based on piecewise-linear functions, namely: saturated function series and Chua's diode (negative slopes). Basically, a very new procedure to measure the PSP coverture among all generated scrolls is introduced in the optimization loop for each feasible solution maximizing the MLE. The best optimized results are compared with traditional values of the coefficients of the equations describing the oscillators. Finally, we list the values of the optimized MLE and their corresponding PSP when generating from 2- to 6-scroll attractors.
引用
收藏
页码:1503 / 1515
页数:13
相关论文
共 22 条
[1]   STABILITY OF ORBITS VIA LYAPUNOV EXPONENTS IN AUTONOMOUS AND NONAUTONOMOUS SYSTEMS [J].
Balibrea, Francisco ;
Victoria Caballero, M. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (07)
[2]   Optimizing the positive Lyapunov exponent in multi-scroll chaotic oscillators with differential evolution algorithm [J].
Carbajal-Gomez, V. H. ;
Tlelo-Cuautle, E. ;
Fernandez, F. V. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) :8163-8168
[3]   SIMULATION AND CIRCUIT IMPLEMENTATION OF SPROTT CASE H CHAOTIC SYSTEM AND ITS SYNCHRONIZATION APPLICATION FOR SECURE COMMUNICATION SYSTEMS [J].
Cicek, Serdar ;
Uyaroglu, Yilmaz ;
Pehlivan, Ihsan .
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2013, 22 (04)
[4]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[5]  
Dieci L., 2002, Journal of Dynamics and Differential Equations, V14, P697, DOI [DOI 10.1023/A:1016395301189, 10.1023/A:1016395301189]
[6]   Characterization of multiscroll attractors using Lyapunov exponents and Lagrangian coherent structures [J].
Fazanaro, Filipe I. ;
Soriano, Diogo C. ;
Suyama, Ricardo ;
Attux, Romis ;
Madrid, Marconi K. ;
De Oliveira, Jose Raimundo .
CHAOS, 2013, 23 (02)
[7]  
Gámez-Guzmán L, 2008, REV MEX FIS, V54, P299
[8]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[9]   Amplitude control approach for chaotic signals [J].
Li, Chunbiao ;
Sprott, J. C. .
NONLINEAR DYNAMICS, 2013, 73 (03) :1335-1341
[10]   Generating tri-chaos attractors with three positive Lyapunov exponents in new four order system via linear coupling [J].
Li, Shih-Yu ;
Huang, Sheng-Chieh ;
Yang, Cheng-Hsiung ;
Ge, Zheng-Ming .
NONLINEAR DYNAMICS, 2012, 69 (03) :805-816