On the identifiability of the time delay with least-squares methods

被引:30
|
作者
Ferretti, G [1 ]
Maffezzoni, C [1 ]
Scattolini, R [1 ]
机构
[1] UNIV PAVIA,FAC INGN,DIPARTIMENTO INFORMAT & SISTEMIST,I-27100 PAVIA,ITALY
关键词
time-delay estimation; least-squares identification; delay analysis; sampled-data control; recursive least squares;
D O I
10.1016/0005-1098(95)00172-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the presence and the effects of multiple minima in the loss function to be minimized in time-delay estimation methods based on least squares. It is shown how in most cases a low-pass filtering action is required on data used in the identification phase in order to estimate the proper delay value. The results presented are derived by means of a frequency-domain interpretation of the least-squares technique. The paper does not focus on a specific estimation algorithm, rather it presents a scenario to accommodate many recently published identification methods. Some numerical examples illustrate the main results.
引用
收藏
页码:449 / 453
页数:5
相关论文
共 50 条
  • [21] WHEN LEAST-SQUARES SQUARES LEAST
    ALCHALABI, M
    GEOPHYSICAL PROSPECTING, 1992, 40 (03) : 359 - 378
  • [22] Least-squares estimation and group delay in astrometric interferometers
    Lawson, PR
    Colavita, MR
    Dumont, PJ
    Lane, BF
    INTERFEROMETRY IN OPTICAL ASTRONOMY, PTS 1 AND 2, 2000, 4006 : 397 - 406
  • [23] Finite element methods of least-squares type
    Bochev, PB
    Gunzburger, MD
    SIAM REVIEW, 1998, 40 (04) : 789 - 837
  • [24] LEAST-SQUARES MOMENT MATCHING REDUCTION METHODS
    SMITH, ID
    LUCAS, TN
    ELECTRONICS LETTERS, 1995, 31 (11) : 929 - 930
  • [25] Discrete least-squares finite element methods
    Keith, Brendan
    Petrides, Socratis
    Fuentes, Federico
    Demkowicz, Leszek
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 : 226 - 255
  • [26] CONVERGENCE OF STANDARD AND DAMPED LEAST-SQUARES METHODS
    BRUSSET, H
    DEPEYRE, D
    PETIT, JP
    HAFFNER, F
    JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (04) : 534 - 542
  • [27] Gradient methods and conic least-squares problems
    Xia, Yu
    OPTIMIZATION METHODS & SOFTWARE, 2015, 30 (04): : 769 - 803
  • [28] OVERVIEW OF REFINEMENT AND LEAST-SQUARES METHODS.
    Tronrud, Dale E.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1996, 52 : C84 - C84
  • [29] On mass-conserving least-squares methods
    Heys, J. J.
    Lee, E.
    Manteuffel, T. A.
    McCormick, S. F.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (05): : 1675 - 1693
  • [30] LEAST-SQUARES METHODS FOR ELLIPTIC-SYSTEMS
    AZIZ, AK
    KELLOGG, RB
    STEPHENS, AB
    MATHEMATICS OF COMPUTATION, 1985, 44 (169) : 53 - 70