Regularity of the obstacle problem for the parabolic biharmonic equation

被引:15
作者
Novaga, Matteo [1 ]
Okabe, Shinya [2 ]
机构
[1] Univ Pisa, Dept Math, I-56127 Pisa, Italy
[2] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
CAHN-HILLIARD EQUATION; EXISTENCE; BOUNDARY;
D O I
10.1007/s00208-015-1200-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the obstacle problem for the parabolic biharmonic equation. We study the problem via an implicit time discretization, we prove the existence of a unique solution and discuss its regularity property.
引用
收藏
页码:1147 / 1186
页数:40
相关论文
共 32 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[3]  
Ambrosio L., 1995, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., V19, P191
[4]  
Ambrosio L., 2008, GRADIENT FLOW
[5]  
[Anonymous], 1977, ANN SCUOLA NORM SUP
[6]  
Baocchi C., 1986, Ann. Della Sc. Norm. Super.-Pisa.-Cl. Sci, V13, P617
[7]   Explicit estimates on the fundamental solution of higher-order parabolic equations with measurable coefficients [J].
Barbatis, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 174 (02) :442-463
[8]  
Brezis H., 1973, Operateurs Maximaux Monotones
[9]   Regularity of a free boundary in parabolic potential theory [J].
Caffarelli, L ;
Petrosyan, A ;
Shahgholian, H .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (04) :827-869
[10]  
Caffarelli L., 1979, Ann. Scuola Norm. Sup. Pisa Cl. Sci, P151