Transcritical CO2 heat pump dryer:: Part 1.: Mathematical model and simulation

被引:33
作者
Sarkar, J. [1 ]
Bhattacharyya, Souvik [1 ]
Gopal, M. Ram [1 ]
机构
[1] Indian Inst Technol, Dept Mech Engn, Kharagpur 721302, W Bengal, India
关键词
CO2 heat pump; heat pump dryer; mathematical modeling; simulation;
D O I
10.1080/07373930601030903
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this study, a mathematical model and simulation code has been developed to investigate the performance of a transcritical CO2 heat pump dryer. The model takes into account detailed heat and mass transfer and pressure drop phenomena occurring in each component of the system. To take care of the variable heat transfer properties, the heat exchanger components were divided into several infinitesimal segments to examine the state, heat and mass balance and pressure drop for both refrigerant and air, and hence accurate results are expected. In Part 2 of the article, the model developed has been validated with experimental data and then the model was used to investigate effects of important operating parameters on the performance.
引用
收藏
页码:1583 / 1591
页数:9
相关论文
共 50 条
[21]   Investigation on the feasibility and performance of transcritical CO2 heat pump integrated with thermal energy storage for space heating [J].
Wang, Zhihua ;
Wang, Fenghao ;
Ma, Zhenjun ;
Lin, Wenye ;
Ren, Haoshan .
RENEWABLE ENERGY, 2019, 134 :496-508
[22]   A comprehensive study on a novel transcritical CO2 heat pump for simultaneous space heating and cooling-Concepts and initial performance [J].
Wang, Ji ;
Belusko, Martin ;
Liu, Ming ;
Semsarilar, Hesam ;
Liddle, Raymond ;
Alemu, Alemu ;
Evans, Michael ;
Zhao, Chunrong ;
Hudson, Julian ;
Bruno, Frank .
ENERGY CONVERSION AND MANAGEMENT, 2021, 243
[23]   Optimal heat rejection pressure for transcritical CO2 refrigeration cycle with an expander [J].
Yang, Jun Lan ;
Ma, Yi Tai ;
Zhang, Jia Hui .
INTERNATIONAL JOURNAL OF GREEN ENERGY, 2016, 13 (02) :208-212
[24]   Experimental investigation on air-source transcritical CO2 heat pump water heater system at a fixed water inlet temperature [J].
Wang, Shouguo ;
Tuo, Hanfei ;
Cao, Feng ;
Xing, Ziwen .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2013, 36 (03) :701-716
[25]   Thermal energy from transcritical CO2 heat pumps for small marine applications [J].
McLean, D. ;
Pope, K. ;
Muzychka, Y. .
2014 OCEANS - ST. JOHN'S, 2014,
[26]   Reduction in CO2 Emissions with Bivalent Heat Pump Systems [J].
Buday, Tamas ;
Buday-Bodi, Erika .
ENERGIES, 2023, 16 (07)
[27]   Performance optimization of CO2 heat pump water heater [J].
Nawaz, Kashif ;
Shen, Bo ;
Elatar, Ahmed ;
Baxter, Van ;
Abdelaziz, Omar .
INTERNATIONAL JOURNAL OF REFRIGERATION, 2018, 85 :213-228
[28]   Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2 as a working fluid [J].
Byrne, Paul ;
Miriel, Jacques ;
Lenat, Yves .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2009, 32 (07) :1711-1723
[29]   Performance analysis and city applicability evaluation of a transcritical CO2 heat pump system integrated with expander-compressor unit subcooling for space heating [J].
Lv, Dewei ;
Ran, Deyong ;
Yang, Qichao ;
Zhang, Wenting ;
Zhao, Yuanyang ;
Liu, Guangbin ;
Li, Liansheng .
ENERGY, 2025, 320
[30]   Fan-less heat exchanger concept for CO2 heat pump systems [J].
Nekså, P ;
Hoggen, RL ;
Aflekt, K ;
Jakobsen, A ;
Skaugen, G .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2005, 28 (08) :1205-1211