Likelihood and Bayesian estimations for step-stress life test model under Type-I censoring

被引:0
作者
Ismail, Ali A. [1 ,2 ]
机构
[1] King Saud Univ, Coll Sci, Dept Stat & Operat Res, POB 2455, Riyadh 11451, Saudi Arabia
[2] Cairo Univ, Fac Econ & Polit Sci, Dept Stat, Giza 12613, Egypt
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2015年 / 44卷 / 05期
关键词
Reliability; partially accelerated step-stress life test; Bayesian estimation; Gibbs sampling; EXPONENTIAL-DISTRIBUTION; OPTIMAL-DESIGN; ACCELERATION; INFERENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper discusses likelihood and Bayesian estimations for partially accelerated step-stress life test model under Type-I censoring assuming Pareto distribution of the second kind. The posterior means and posterior variances are obtained under the squared error loss function using Lindley's approximation procedure. It has been observed that Lindley's method usually provides posterior variances and mean square errors smaller than those of the maximum likelihood estimators. Furthermore, the highest posterior density credible intervals of the model parameters based on Gibbs sampling technique are computed. For illustration, simulation studies and an illustrative example based on a real data set are provided.
引用
收藏
页码:1235 / 1245
页数:11
相关论文
共 35 条
[1]  
Abd-Elfattah A.M., 2008, Statistical Methodology, V5, P502, DOI [DOI 10.1016/J.STAMET.2007.12.001, 10.1016/j.stamet.2007.12.001]
[2]  
Abdel-Ghani M. M., 1998, THESIS CAIRO U EGYPT
[3]  
Aly H., 2008, Far East J. Theor. Stat., V24, P175
[4]  
[Anonymous], P 32 ANN C STAT COMP
[5]  
[Anonymous], 2009, INT MATH FORUM
[6]  
Attia A.F., 1996, PROCEEDING 31 ANN C, P128
[7]   OPTIMAL-DESIGN OF PARTIALLY ACCELERATED LIFE TESTS FOR THE LOGNORMAL-DISTRIBUTION UNDER TYPE-I CENSORING [J].
BAI, DS ;
CHUNG, SW ;
CHUN, YR .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 1993, 40 (01) :85-92
[8]   OPTIMAL-DESIGN OF PARTIALLY ACCELERATED LIFE TESTS FOR THE EXPONENTIAL-DISTRIBUTION UNDER TYPE-I CENSORING [J].
BAI, DS ;
CHUNG, SW .
IEEE TRANSACTIONS ON RELIABILITY, 1992, 41 (03) :400-406
[9]  
Bain L.J., 1992, INTRO PROBABILITY MA, V2nd ed.
[10]   Bayesian analysis for masked system failure data using non-identical Weibull models [J].
Basu, S ;
Asit ;
Basu, P ;
Mukhopadhyay, C .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 78 (1-2) :255-275