Singular Value Decomposition update and its application to (Inc)-OP-ELM

被引:8
作者
Grigorievskiy, Alexander [1 ]
Miche, Yoan [1 ,2 ]
Kapyla, Maarit [3 ]
Lendasse, Amaury [4 ,5 ,6 ]
机构
[1] Aalto Univ, Sch Sci, Dept Comp Sci, FI-00076 Aalto, Finland
[2] Nokia Solut & Networks Grp, Espoo, Finland
[3] Aalto Univ, Dept Informat & Comp Sci, ReSoLVE Ctr Excellence, FI-00076 Aalto, Finland
[4] Univ Iowa, Dept Mech & Ind Engn, Iowa City, IA 52242 USA
[5] Univ Iowa, Iowa Informat Initiat, Iowa City, IA 52242 USA
[6] Arcada Univ Appl Sci, Helsinki 00550, Finland
关键词
Singular Value Decomposition; SVD; Extreme Learning Machine; ELM; Incremental ELM; OP-ELM; Leave-one-out; LOO; PRESS statistics;
D O I
10.1016/j.neucom.2015.03.107
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider the theory and the practical implementation of Singular Value Decomposition (SVD) update algorithm. By updating, we mean using previously computed SVD to compute the SVD of a matrix augmented by one column (or row). We compare it with the standard SVD algorithm in terms of computational complexity and accuracy. We show that SVD update algorithm scales better and works faster than SVD computed from scratch. In addition, we analyze errors in singular values after many consecutive updates and verify that they are within reasonable bounds. Finally, we apply SVD update to speed up OP-ELM algorithm and propose new algorithm (Inc)-OP-LEM. In conclusion, we believe that SVD update can be applied to other computational intelligence methods to improve their computational time and scaling. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 108
页数:10
相关论文
共 26 条
[1]   Numerical linear algebra on emerging architectures: the PLASMA and MAGMA projects [J].
Agullo, Emmanuel ;
Demmel, Jim ;
Dongarra, Jack ;
Hadri, Bilel ;
Kurzak, Jakub ;
Langou, Julien ;
Ltaief, Hatem ;
Luszczek, Piotr ;
Tomov, Stanimire .
SCIDAC 2009: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2009, 180
[2]   RELATIONSHIP BETWEEN VARIABLE SELECTION AND DATA AUGMENTATION AND A METHOD FOR PREDICTION [J].
ALLEN, DM .
TECHNOMETRICS, 1974, 16 (01) :125-127
[3]  
Angerson E., 1990, Proceedings of Supercomputing '90 (Cat. No.90CH2916-5), P2, DOI 10.1109/SUPERC.1990.129995
[4]  
[Anonymous], 1996, Introduction to radial basis function networks
[5]  
Bache K., 2013, UCI Machine Learning Repository
[6]   Fast low-rank modifications of the thin singular value decomposition [J].
Brand, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 415 (01) :20-30
[7]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[8]   Regularization and statistical learning theory for data analysis [J].
Evgeniou, T ;
Poggio, T ;
Pontil, M ;
Verri, A .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 38 (04) :421-432
[9]  
Golub GH., 2012, MATRIX COMPUTATIONS, V3
[10]  
GU M, 1994, TECHNICAL REPORT