Nanofiber-based all-optical switches

被引:8
作者
Le Kien, Fam [1 ]
Rauschenbeutel, A. [2 ]
机构
[1] Wolfgang Pauli Inst, Oskar Morgensternpl 1, A-1090 Vienna, Austria
[2] Vienna Univ Technol, Inst Atom & Subat Phys, Vienna Ctr Quantum Sci & Technol, Stad Allee 2, A-1020 Vienna, Austria
基金
奥地利科学基金会;
关键词
ELECTROMAGNETICALLY INDUCED TRANSPARENCY; SINGLE PHOTONS; SPONTANEOUS EMISSION; QUANTUM-THEORY; CAVITY; ATOM; GENERATION; BLOCKADE; LIGHT; STORAGE;
D O I
10.1103/PhysRevA.93.013849
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study all-optical switches operating on a single four-level atom with the N-type transition configuration in a two-mode nanofiber cavity with a significant length (on the order of 20 mm) and a moderate finesse (on the order of 300) under the electromagnetically induced transparency (EIT) conditions. In our model, the gate and probe fields are the quantum nanofiber-cavity fields excited by weak classical light pulses, and the parameters of the D-2 line of atomic cesium are used. We examine two different switching schemes. The first scheme is based on the effect of the presence of a photon in the gate mode on the EIT of the probe mode. The second scheme is based on the use of EIT to store a photon of the gate mode in the population of an appropriate atomic level, which leads to the reduction of the transmission of the field in the probe mode. We investigate the dependencies of the switching contrast on various parameters, such as the cavity length, the mirror reflectivity, and the detunings and powers of the cavity driving field pulses. For a nanofiber cavity with fiber radius of 250 nm, cavity length of 20 mm, and cavity finesse of 313 and a cesium atom at a distance of 200 nm from the fiber surface, we numerically obtain a switching contrast on the order of about 67% for the first scheme and of about 95% for the second scheme. These switching operations require small mean numbers of photons in the nanofiber cavity gate and probe modes.
引用
收藏
页数:19
相关论文
共 100 条
  • [1] Albert M, 2011, NAT PHOTONICS, V5, P633, DOI [10.1038/NPHOTON.2011.214, 10.1038/nphoton.2011.214]
  • [2] [Anonymous], 1948, Handbook of Mathematical Functions withFormulas, Graphs, and Mathematical Tables, DOI DOI 10.1119/1.15378
  • [3] Photon blockade with a four-level quantum emitter coupled to a photonic-crystal nanocavity
    Bajcsy, M.
    Majumdar, A.
    Rundquist, A.
    Vuckovic, J.
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [4] Efficient All-Optical Switching Using Slow Light within a Hollow Fiber
    Bajcsy, M.
    Hofferberth, S.
    Balic, V.
    Peyronel, T.
    Hafezi, M.
    Zibrov, A. S.
    Vuletic, V.
    Lukin, M. D.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (20)
  • [5] Atom trapping and guiding with a subwavelength-diameter optical fiber
    Balykin, VI
    Hakuta, K
    Le Kien, F
    Liang, JQ
    Morinaga, M
    [J]. PHYSICAL REVIEW A, 2004, 70 (01): : 011401 - 1
  • [6] Single-Photon Switch Based on Rydberg Blockade
    Baur, Simon
    Tiarks, Daniel
    Rempe, Gerhard
    Duerr, Stephan
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (07)
  • [7] Berman P. R., 1994, Cavity quantum electrodynamics
  • [8] Supercontinuum generation in tapered fibers
    Birks, TA
    Wadsworth, WJ
    Russell, PS
    [J]. OPTICS LETTERS, 2000, 25 (19) : 1415 - 1417
  • [9] Photon blockade in an optical cavity with one trapped atom
    Birnbaum, KM
    Boca, A
    Miller, R
    Boozer, AD
    Northup, TE
    Kimble, HJ
    [J]. NATURE, 2005, 436 (7047) : 87 - 90
  • [10] Bjork G., 1995, SPONTANEOUS EMISSION, P189