The Lie n-Engel property in group rings

被引:17
作者
Lee, GT [1 ]
机构
[1] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
关键词
D O I
10.1080/00927870008826866
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let FG be the group ring of a group G over a field F whose characteristic is p not equal 2. Let * denote the involution on FG which sends each group element to its inverse. Let (FG)(+) and (FG)(-) denote, respectively, the sets of symmetric and skew elements with respect to *. The conditions under which the group ring is Lie n-Engel for some n are known. We show that if either (FG)(+) or (FG)(-) is Lie n-Engel, and G is devoid of 2-elements, then FG is Lie m-Engel for some m. Furthermore, we completely classify the remaining groups for which (FG)(+) is Lie n-Engel.
引用
收藏
页码:867 / 881
页数:15
相关论文
共 9 条
[1]   LIE NILPOTENCY OF GROUP-RINGS [J].
GIAMBRUNO, A ;
SEHGAL, SK .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (11) :4253-4261
[2]   Symmetric units and group identities [J].
Giambruno, A ;
Sehgal, SK ;
Valenti, A .
MANUSCRIPTA MATHEMATICA, 1998, 96 (04) :443-461
[3]  
HALL M, 1959, THEORY GROUPS
[4]  
HERSTEIN IN, 1976, RINGS INVOLUTION
[5]  
LEE GT, IN PRESS GROUP RINGS
[6]   LIE SOLVABLE GROUP RINGS [J].
PASSI, IBS ;
PASSMAN, DS ;
SEHGAL, SK .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (04) :748-757
[7]  
Passman D. S., 1977, Pure and Applied Mathematics
[8]   Group algebras whose units satisfy a group identity .2. [J].
Passman, DS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (03) :657-662
[9]  
Sehgal S. K., 1978, TOPICS GROUP RINGS