Multiple Sign-Changing Solutions for Quasilinear Elliptic Equations via Perturbation Method
被引:85
|
作者:
Liu, Jia-Quan
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Liu, Jia-Quan
[1
]
Liu, Xiang-Qing
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Dept Math, Kunming, Peoples R ChinaPeking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Liu, Xiang-Qing
[2
]
Wang, Zhi-Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R China
Utah State Univ, Dept Math & Stat, Logan, UT 84322 USAPeking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Wang, Zhi-Qiang
[3
,4
,5
]
机构:
[1] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
[2] Yunnan Normal Univ, Dept Math, Kunming, Peoples R China
[3] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[5] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
We consider existence and multiplicity of sign-changing solutions for a class of quasilinear problems which has received considerable attention in the past, including the so called Modified Nonlinear Schrodinger Equations. We develop a new variational approach to treat this class of quasilinear equations by proposing a p-Laplacian regularization process. By establishing necessary estimates we show the solutions to the perturbation problems converge in a sense to solutions of the original problems. We show that the new approach is especially effective for dealing with issues of multiple solutions and sign-changing solutions.
机构:
Beijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R ChinaBeijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R China
Jing, Yongtao
Liu, Zhaoli
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaBeijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R China
Liu, Zhaoli
Wang, Zhi-Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Normal Univ, Coll Math & Stat, Fuzhou 350117, Peoples R China
Utah State Univ, Dept Math & Stat, Logan, UT 84322 USABeijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R China
机构:
China Three Gorges Univ, Three Gorges Math Res Ctr, Yichang 443002, Peoples R China
China Three Gorges Univ, Coll Sci, Yichang 443002, Peoples R ChinaChina Three Gorges Univ, Three Gorges Math Res Ctr, Yichang 443002, Peoples R China
Chen, Peng
Gu, Longjiang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R ChinaChina Three Gorges Univ, Three Gorges Math Res Ctr, Yichang 443002, Peoples R China
Gu, Longjiang
Wu, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ Technol, Sch Math & Stat, Wuhan 430070, Peoples R ChinaChina Three Gorges Univ, Three Gorges Math Res Ctr, Yichang 443002, Peoples R China