Ellipticity criteria for ballistic behavior of random walks in random environment

被引:7
作者
Campos, David [1 ,2 ]
Ramirez, Alejandro F. [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
[2] Univ Costa Rica, Escuela Matemat, San Jose, Costa Rica
关键词
Random walk in random environment; Renormalization; Uniform ellipticity; Ellipticity; LARGE NUMBERS; LAW;
D O I
10.1007/s00440-013-0527-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce ellipticity criteria for random walks in i.i.d. random environments under which we can extend the ballisticity conditions of Sznitman and the polynomial effective criteria of Berger, Drewitz and Ramirez originally defined for uniformly elliptic random walks. We prove under them the equivalence of Sznitman's condition with the polynomial effective criterion , for large enough. We furthermore give ellipticity criteria under which a random walk satisfying the polynomial effective criterion, is ballistic, satisfies the annealed central limit theorem or the quenched central limit theorem.
引用
收藏
页码:189 / 251
页数:63
相关论文
共 18 条
[1]  
[Anonymous], 2004, ICTP LECT NOTES
[2]  
Berger N., 2012, COMM PURE APPL MATH
[3]  
Berger N, 2008, PROG PROBAB, V60, P137
[4]   Slowdown estimates for ballistic random walk in random environment [J].
Berger, Noam .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (01) :127-174
[5]   Ballisticity conditions for random walk in random environment [J].
Drewitz, A. ;
Ramirez, A. F. .
PROBABILITY THEORY AND RELATED FIELDS, 2011, 150 (1-2) :61-75
[6]   QUENCHED EXIT ESTIMATES AND BALLISTICITY CONDITIONS FOR HIGHER-DIMENSIONAL RANDOM WALK IN RANDOM ENVIRONMENT [J].
Drewitz, Alexander ;
Ramirez, Alejandro F. .
ANNALS OF PROBABILITY, 2012, 40 (02) :459-534
[7]  
Fribergh A, 2011, ARXIV11070706
[8]   Almost sure functional central limit theorem for ballistic random walk in random environment [J].
Rassoul-Agha, Firas ;
Seppaelaeinen, Timo .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (02) :373-420
[9]  
Sabot C, 2012, ANN PROBAB IN PRESS
[10]   Random walks in random Dirichlet environment are transient in dimension d ≥ 3 [J].
Sabot, Christophe .
PROBABILITY THEORY AND RELATED FIELDS, 2011, 151 (1-2) :297-317