Interacting particle systems approximations of the Kushner-Stratonovitch equation

被引:22
作者
Crisan, D
Del Moral, P
Lyons, TJ
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB2 1SB, England
[2] Univ Toulouse 3, CNRS, UMR C55830, Lab Stat & Probabil, F-31062 Toulouse, France
[3] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
关键词
non-linear filtering; filter approximation; error bounds; interacting particle systems; genetic algorithms;
D O I
10.1239/aap/1029955206
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider the continuous-time filtering problem and we estimate the order of convergence of an interacting particle system scheme presented by the authors in previous works. We will discuss how the discrete time approximating model of the Kushner-Stratonovitch equation and the genetic type interacting particle system approximation combine. We present quenched error bounds as well as mean order convergence results.
引用
收藏
页码:819 / 838
页数:20
相关论文
共 25 条
[1]  
[Anonymous], STOCHASTICS STOCHAST
[2]   Nonlinear filtering and measure-valued processes [J].
Crisan, D ;
Lyons, T .
PROBABILITY THEORY AND RELATED FIELDS, 1997, 109 (02) :217-244
[3]  
CRISAN D, 1998, PUBL LAB STAT PROB U, V198
[4]  
CRISAN D, 1999, IN PRESS SIAM J APPL
[5]  
Del Moral P, 1998, ANN APPL PROBAB, V8, P438
[6]  
Del Moral P, 1998, STOCH PROC APPL, V78, P69
[7]  
Del Moral P, 1999, ANN APPL PROBAB, V9, P275
[8]   A uniform convergence theorem for the numerical solving of the nonlinear filtering problem [J].
Del Moral, P .
JOURNAL OF APPLIED PROBABILITY, 1998, 35 (04) :873-884
[9]   Nonlinear filtering: Interacting particle resolution [J].
DelMoral, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (06) :653-658
[10]   Nonlinear filtering using random particles [J].
DelMoral, P .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1996, 40 (04) :690-701