Laplacian based non-linear diffusion filtering

被引:0
作者
Nishiguchi, Haruhiko [1 ]
Imiya, Atsushi [2 ]
Sakai, Tomoya [2 ]
机构
[1] Chiba Univ, Sch Sci & Technol, Chiba, Japan
[2] Chiba Univ, MTD IMIT, Inage Ku, Chiba 2638522, Japan
来源
18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS | 2006年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to introduce a diffusion filtering based on the Laplacian map. Classical non-linear diffusion filtering using the gradient-map-controlled local diffusivity. The Laplacian maps has similar geometric properties with the gradient map for the extraction of the region boundaries. Laplacian-based diffusion function has the same property with the Perona-Malik type and the Weickert type diffusion functions for the small scale. However for the large scale, the diffusion operation has similar geometrical properties with the linear diffusion filtering. Therefore, the filtering operation in this paper provides a method for the combination of hierarchical expression based on linear and non-linear diffusion filtering operations.
引用
收藏
页码:838 / +
页数:2
相关论文
共 13 条
[1]  
[Anonymous], 2004, NUMERICAL GEOMETRY I
[2]  
[Anonymous], ACTA MATH U COMENIAN
[3]  
Barash D, 2001, LECT NOTES COMPUT SC, V2106, P281
[4]  
Bracewell R. N., 1995, Two-Dimensional Imaging
[5]  
Imiya A, 2003, LECT NOTES COMPUT SC, V2695, P356
[6]  
KUIJPER A, 2002, THESIS UTRECHT U
[7]  
NEELIN P, MCCONNELL BRAIN IMAG
[8]   SCALE-SPACE AND EDGE-DETECTION USING ANISOTROPIC DIFFUSION [J].
PERONA, P ;
MALIK, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (07) :629-639
[9]  
Sakai T, 2004, LECT NOTES COMPUT SC, V3117, P145
[10]  
Schroeder M. R., 1997, NUMBER THEORY SCI CO, DOI DOI 10.1007/978-3-662-03430-9