Nondegeneracy of blow-up points for the parabolic Keller-Segel system

被引:238
作者
Mizoguchi, Noriko [1 ,2 ]
Souplet, Philippe [3 ]
机构
[1] Tokyo Gakugei Univ, Dept Math, Koganei, Tokyo 1848501, Japan
[2] Japan Sci & Technol Agcy, Precursory Res Embryon Sci & Technol PRESTO, Tokyo, Japan
[3] Univ Paris 13, Sorbonne Paris Cite, LAGA, CNRS,UMR 7539, F-93430 Villetaneuse, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2014年 / 31卷 / 04期
关键词
Keller-Segel system; Blow-up; Nondegeneracy; ELLIPTIC SYSTEM; CHEMOTAXIS; MODEL; BEHAVIOR; AGGREGATION; EXISTENCE;
D O I
10.1016/j.anihpc.2013.07.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the parabolic Keller-Segel system {u(t) = del center dot (del u - u(m)del v) in Omega x (0, T), Gamma v(t) - Delta v - lambda v + u in Omega x (0, T), in a domain Omega of R-N with N >= 1, where m, Gamma > 0, lambda >= 0 are constants and T > 0. When Omega not equal R-N, we impose the Neumann boundary conditions on the boundary. Under suitable assumptions, we prove the local nondegeneracy of blow-up points. This seems new even for the classical Keller Segel system (m = 1). Lower global blow-up estimates are also obtained. In the singular case 0 <m < 1, as a prerequisite, local existence and regularity properties are established. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:851 / 875
页数:25
相关论文
共 50 条
  • [1] [Anonymous], 2005, PROGR NONLINEAR DIFF
  • [2] [Anonymous], 2007, Adv. Math. Sci. Appl.
  • [3] Biler P, 2006, TOPOL METHOD NONL AN, V27, P133
  • [4] Biler P., 1994, Colloq. Math, V66, P319, DOI DOI 10.4064/CM-66-2-319-334
  • [5] Biler P., 1998, Adv. Math. Sci. Appl., V8, P715
  • [6] Blanchet A., 2006, ELECT J DIFFERENTIAL, V44
  • [7] Blanchet A, 2008, COMMUN PUR APPL MATH, V61, P1449, DOI 10.1002/cpa.20225
  • [8] Calvez V, 2008, COMMUN MATH SCI, V6, P417
  • [9] NON-LINEAR ASPECTS OF CHEMOTAXIS
    CHILDRESS, S
    PERCUS, JK
    [J]. MATHEMATICAL BIOSCIENCES, 1981, 56 (3-4) : 217 - 237
  • [10] Childress S., 1984, Modelling of Patterns in Space and Time, P61