Constructing hierarchical submicrotubes from interconnected TiO2 nanocrystals for high reversible capacity and long-life lithium-ion batteries

被引:43
作者
Xin, Ling [1 ,3 ]
Liu, Yong [1 ]
Li, Baojun [1 ]
Zhou, Xiang [1 ]
Shen, Hui [1 ]
Zhao, Wenxia [2 ]
Liang, Chaolun [2 ]
机构
[1] Sun Yat Sen Univ, Sch Phys & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Instrumental Anal & Res Ctr, Guangzhou 510275, Guangdong, Peoples R China
[3] Shenyang Aerosp Univ, Coll Mech & Elect Engn, Shenyang 110136, Peoples R China
基金
中国国家自然科学基金;
关键词
ANODE MATERIAL; ELECTROCHEMICAL PROPERTIES; RATE PERFORMANCE; RATE CAPABILITY; NANOTUBE ANODE; STORAGE; ANATASE; NANOFIBERS; MICROSPHERES; TITANIA;
D O I
10.1038/srep04479
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here, we report a facile hydrothermal approach for synthesizing anatase TiO2 hierarchical mesoporous submicrotubes (ATHMSs) with the aid of long-chain polymer as soft template. The TiO2 nanocrystals, with sizes of 6-8 nm, are well interconnected with each other to build tubular architectures with diameters of 0.3-1.5 mu m and lengths of 10-25 mu m. Such highly porous structures give rise to very large specific surface area of 201.9 m(2) g(-1) and 136.8 m(2) g(-1) for the as-prepared and annealed samples, respectively. By using structurally stable ATHMSs as anode materials for lithium-ion batteries, they exhibited high reversible capacity, long cycling life and excellent cycling stability. Even after 1000 cycles, such ATHMS electrodes retained a reversible discharge capacity as high as 150 mAh g(-1) at the current density of 1700 mA g(-1), maintaining 92% of the initial discharge capacity (163 mAh g(-1)).
引用
收藏
页数:7
相关论文
共 34 条
[1]   Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage [J].
Chen, Jun Song ;
Tan, Yi Ling ;
Li, Chang Ming ;
Cheah, Yan Ling ;
Luan, Deyan ;
Madhavi, Srinivasan ;
Boey, Freddy Yin Chiang ;
Archer, Lynden A. ;
Lou, Xiong Wen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (17) :6124-6130
[2]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959
[3]   Titanium-Based Anode Materials for Safe Lithium-Ion Batteries [J].
Chen, Zonghai ;
Belharouak, Ilias ;
Sun, Y-K ;
Amine, Khalil .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) :959-969
[4]   Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries [J].
Deng, Da ;
Kim, Min Gyu ;
Lee, Jim Yang ;
Cho, Jaephil .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (08) :818-837
[5]   New facile synthesis of TiO2 hollow sphere with an opening hole and its enhanced rate performance in lithium-ion batteries [J].
Ding, Shangjun ;
Lin, Tianquan ;
Wang, Yaoming ;
Lu, Xujie ;
Huang, Fuqiang .
NEW JOURNAL OF CHEMISTRY, 2013, 37 (03) :784-789
[6]   Ac impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite [J].
Funabiki, A ;
Inaba, M ;
Ogumi, Z .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :227-231
[7]   Hierarchical LiFePO4 with a controllable growth of the (010) facet for lithium-ion batteries [J].
Guo, Binbin ;
Ruan, Hongcheng ;
Zheng, Cheng ;
Fei, Hailong ;
Wei, Mingdeng .
SCIENTIFIC REPORTS, 2013, 3
[8]  
Guo YG, 2008, ADV MATER, V20, P2878, DOI 10.1002/adma.200800627
[9]   Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks [J].
Guo, Yu-Guo ;
Hu, Yong-Sheng ;
Sigle, Wilfried ;
Maier, Joachim .
ADVANCED MATERIALS, 2007, 19 (16) :2087-+
[10]   Dominant Factors Governing the Rate Capability of a TiO2 Nanotube Anode for High Power Lithium Ion Batteries [J].
Han, Hyungkyu ;
Song, Taeseup ;
Lee, Eung-Kwan ;
Devadoss, Anitha ;
Jeon, Yeryung ;
Ha, Jaehwan ;
Chung, Yong-Chae ;
Choi, Young-Min ;
Jung, Yeon-Gil ;
Paik, Ungyu .
ACS NANO, 2012, 6 (09) :8308-8315