Micropolar modeling of planar orthotropic rectangular chiral lattices

被引:37
作者
Chen, Yi [1 ]
Liu, Xiaoning [1 ]
Hu, Gengkai [1 ]
机构
[1] Beijing Inst Technol, Key Lab Dynam & Control Flight Vehicle, Minist Educ, Sch Aerosp Engn, Beijing 100081, Peoples R China
来源
COMPTES RENDUS MECANIQUE | 2014年 / 342卷 / 05期
基金
中国国家自然科学基金;
关键词
Chiral micropolar elasticity; Orthotropic; Rectangular chiral lattice; Two-dimensional; AUXETIC MATERIALS; WAVE-PROPAGATION; ELASTICITY;
D O I
10.1016/j.crme.2014.01.010
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Rectangular chiral lattices possess a two-fold symmetry; in order to characterize the overall behavior of such lattices, a two-dimensional orthotropic chiral micropolar theory is proposed. Eight additional material constants are necessary to represent the anisotropy in comparison with triangular ones, four of which are devoted to chirality. Homogenization procedures are also developed for the chiral lattice with rigid or deformable circles, all material constants in the developed micropolar theory are derived analytically for the case of the rigid circles and numerically for the case of the deformable circles. The dependences of these material constants and of wave propagation on the microstructural parameters are also examined. (C) 2014 Published by Elsevier Masson SAS on behalf of Academie des sciences.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 24 条
[1]   Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading [J].
Alderson, A. ;
Alderson, K. L. ;
Attard, D. ;
Evans, K. E. ;
Gatt, R. ;
Grima, J. N. ;
Miller, W. ;
Ravirala, N. ;
Smith, C. W. ;
Zied, K. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (07) :1042-1048
[2]  
[Anonymous], 1999, MICROCONTINUUM FIELD, DOI DOI 10.1007/978-1-4612-0555-5
[3]   Matrix representations for 3D strain-gradient elasticity [J].
Auffray, N. ;
Le Quang, H. ;
He, Q. C. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2013, 61 (05) :1202-1223
[4]   Strain gradient elastic homogenization of bidimensional cellular media [J].
Auffray, N. ;
Bouchet, R. ;
Brechet, Y. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2010, 47 (13) :1698-1710
[5]   Coupling of extension and twist in single-walled carbon nanotubes [J].
Chandraseker, K ;
Mukherjee, S .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2006, 73 (02) :315-326
[6]   Fracture analysis of cellular materials: A strain gradient model [J].
Chen, JY ;
Huang, Y ;
Ortiz, M .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (05) :789-828
[7]   Micropolar continuum modelling of bi-dimensional tetrachiral lattices [J].
Chen, Y. ;
Liu, X. N. ;
Hu, G. K. ;
Sun, Q. P. ;
Zheng, Q. S. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2165)
[8]  
Cosserat E., 1909, Theorie des corps deformables
[9]   Homogenization of periodic auxetic materials [J].
Dirrenberger, J. ;
Forest, S. ;
Jeulin, D. ;
Colin, C. .
11TH INTERNATIONAL CONFERENCE ON THE MECHANICAL BEHAVIOR OF MATERIALS (ICM11), 2011, 10 :1847-1852
[10]  
Evans KE, 2000, ADV MATER, V12, P617, DOI 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO