Radiomics in PET/CT: More Than Meets the Eye?

被引:80
作者
Hatt, Mathieu [1 ]
Tixier, Florent [2 ]
Visvikis, Dimitris [1 ]
Le Rest, Catherine Cheze [2 ]
机构
[1] Univ Brest, IBSAM, LaTIM, UMR 1101, Brest, France
[2] CHU Poitiers, Acad Dept Nucl Med, Poitiers, France
关键词
COMPUTER-AIDED-DIAGNOSIS; F-18-FDG PET/CT; FEATURES; HETEROGENEITY; IMAGES; MRI; QUANTIFICATION; NOMOGRAM;
D O I
10.2967/jnumed.116.184655
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Radiomics is defined as the high-throughput extraction of quantitative metrics from medical images (1). One of its main assumptions is that medical images are considered not merely pictures for visual assessment but rather minable quantitative data (2) that may not necessarily be captured by the human eye (3). In this issue of The Journal of Nuclear Medicine, Orlhac et al. present a study comparing visual assessment of uptake heterogeneity on PET images by experts and a subset of radiomics metrics, namely textural features (4). They exploited both clinical and simple simulated PET images, going further than previous studies performed using clinical data only (5-7). Such studies are useful because they provide additional understanding relative to the visual meaning of quantitative metrics that cannot easily be explained to nonspecialists. These studies have focused on the PET component and the F-18-FDG uptake heterogeneity. Similar analyses have been performed with CT (8) and MRI (9).
引用
收藏
页码:365 / 366
页数:2
相关论文
共 26 条
[1]  
Aerts H., 2016, P SOC PHOTO-OPT INS, V9785
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Predicting Breast Cancer Malignancy On DCE-MRI Data Using Pre-Trained Convolutional Neural Networks [J].
Antropova, N. ;
Huynh, B. ;
Giger, M. .
MEDICAL PHYSICS, 2016, 43 (06) :3349-3350
[4]   Breast MRI lesion classification: Improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system [J].
Arbash Meinel, Lina ;
Stolpen, Alan H. ;
Berbaum, Kevin S. ;
Fajardo, Laurie L. ;
Reinhardt, Joseph M. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2007, 25 (01) :89-95
[5]  
Desseroit M-C, 2016, IEEE NSS MIC STRASB
[6]  
Desseroit MC, 2016, J NUCL MED, V57
[7]   Development of a nomogram combining clinical staging with 18F-FDG PET/CT image features in non-small-cell lung cancer stage I-III [J].
Desseroit, Marie-Charlotte ;
Visvikis, Dimitris ;
Tixier, Florent ;
Majdoub, Mohamed ;
Perdrisot, Remy ;
Guillevin, Remy ;
Le Rest, Catherine Cheze ;
Hatt, Mathieu .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 (08) :1477-1485
[8]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[9]  
Hatt M., 2016, EUR J NUCL MED MOL I
[10]   Brain tumor segmentation with Deep Neural Networks [J].
Havaei, Mohammad ;
Davy, Axel ;
Warde-Farley, David ;
Biard, Antoine ;
Courville, Aaron ;
Bengio, Yoshua ;
Pal, Chris ;
Jodoin, Pierre-Marc ;
Larochelle, Hugo .
MEDICAL IMAGE ANALYSIS, 2017, 35 :18-31