Schur algebras of Brauer algebras, II

被引:2
|
作者
Henke, Anne [1 ]
Koenig, Steffen [2 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX1 3LB, England
[2] Univ Stuttgart, Inst Algebra & Zahlentheorie, D-70569 Stuttgart, Germany
关键词
MODULES; FILTRATIONS;
D O I
10.1007/s00209-013-1233-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical problem of invariant theory and of Lie theory is to determine endomorphism rings of representations of classical groups, for instance of tensor powers of the natural module (Schur-Weyl duality) or of full direct sums of tensor products of exterior powers (Ringel duality). In this article, the endomorphism rings of full direct sums of tensor products of symmetric powers over symplectic and orthogonal groups are determined. These are shown to be isomorphic to Schur algebras of Brauer algebras as defined in Henke and Koenig (Math Z 272(3-4):729-759, 2012). This implies structural properties of the endomorphism rings, such as double centraliser properties, quasi-hereditary, and a universal property, as well as a classification of simple modules.
引用
收藏
页码:1077 / 1099
页数:23
相关论文
共 50 条
  • [21] The Brauer algebra and the symplectic Schur algebra
    Donkin, Stephen
    Tange, Rudolf
    MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (01) : 187 - 219
  • [22] UNSTABLE ALGEBRAS OVER AN OPERAD II
    Ikonicoff, Sacha
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2024, 26 (01) : 37 - 67
  • [23] Localizations for quiver Hecke algebras II
    Kashiwara, Masaki
    Kim, Myungho
    Oh, Se-jin
    Park, Euiyong
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2023, 127 (04) : 1134 - 1184
  • [24] GRADED DECOMPOSITION MATRICES OF v-SCHUR ALGEBRAS VIA JANTZEN FILTRATION
    Shan, Peng
    REPRESENTATION THEORY, 2012, 16 : 212 - 269
  • [25] Reconstruction algebras of type D (II)
    Wemyss, Michael
    HOKKAIDO MATHEMATICAL JOURNAL, 2013, 42 (02) : 293 - 329
  • [26] HYPERGROUP ALGEBRAS AS TOPOLOGICAL ALGEBRAS
    Maghsoudi, S.
    Seoane-Sepulveda, J. B.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 90 (03) : 486 - 493
  • [27] Representation theory of We-algebras, II
    Arakawa, Tomoyuki
    EXPLORING NEW STRUCTURES AND NATURAL CONSTRUCTIONS IN MATHEMATICAL PHYSICS, 2011, 61 : 51 - 90
  • [28] Monoidal categorification and quantum affine algebras II
    Kashiwara, Masaki
    Kim, Myungho
    Oh, Se-jin
    Park, Euiyong
    INVENTIONES MATHEMATICAE, 2024, 236 (02) : 837 - 924
  • [29] DG-algebras and derived A∞-algebras
    Sagave, Steffen
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 639 : 73 - 105
  • [30] Leibniz algebras constructed by Witt algebras
    Camacho, L. M.
    Omirov, B. A.
    Kurbanbaev, T. K.
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (10) : 2048 - 2064