Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy

被引:64
作者
Chua, Jason P. [1 ,3 ,4 ]
Reddy, Satya L. [1 ]
Merry, Diane E. [5 ]
Adachi, Hiroaki [6 ]
Katsuno, Masahisa [6 ]
Sobue, Gen [6 ]
Robins, Diane M. [2 ]
Lieberman, Andrew P. [1 ]
机构
[1] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Neurosci Grad Program, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Med Scientist Training Program, Ann Arbor, MI 48109 USA
[5] Thomas Jefferson Univ, Dept Biochem & Mol Biol, Philadelphia, PA 19107 USA
[6] Nagoya Univ, Dept Neurol, Nagoya, Aichi 4668550, Japan
基金
美国国家卫生研究院;
关键词
GLUTAMINE TRACT LENGTH; ANDROGEN RECEPTOR; MOUSE MODEL; SKELETAL-MUSCLE; MOLECULAR-MECHANISMS; REGULATES AUTOPHAGY; AMELIORATES DISEASE; NEURODEGENERATION; MACROAUTOPHAGY; TFEB;
D O I
10.1093/hmg/ddt527
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Spinobulbar muscular atrophy (SBMA) is an inherited neuromuscular disorder caused by the expansion of a CAG repeat encoding a polyglutamine tract in exon 1 of the androgen receptor (AR) gene. SBMA demonstrates androgen-dependent toxicity due to unfolding and aggregation of the mutant protein. There are currently no disease-modifying therapies, but of increasing interest for therapeutic targeting is autophagy, a highly conserved cellular process mediating protein quality control. We have previously shown that genetic manipulations inhibiting autophagy diminish skeletal muscle atrophy and extend the lifespan of AR113Q knock-in mice. In contrast, manipulations inducing autophagy worsen muscle atrophy, suggesting that chronic, aberrant upregulation of autophagy contributes to pathogenesis. Since the degree to which autophagy is altered in SBMA and the mechanisms responsible for such alterations are incompletely defined, we sought to delineate autophagic status in SBMA using both cellular and mouse models. Here, we confirm that autophagy is induced in cellular and knock-in mouse models of SBMA and show that the transcription factors transcription factor EB (TFEB) and ZKSCAN3 operate in opposing roles to underlie these changes. We demonstrate upregulation of TFEB target genes in skeletal muscle from AR113Q male mice and SBMA patients. Furthermore, we observe a greater response in AR113Q mice to physiological stimulation of autophagy by both nutrient starvation and exercise. Taken together, our results indicate that transcriptional signaling contributes to autophagic dysregulation and provides a mechanistic framework for the pathologic increase of autophagic responsiveness in SBMA.
引用
收藏
页码:1376 / 1386
页数:11
相关论文
共 64 条
  • [1] Glutamine tract length of human androgen receptors affects hormone-dependent and -independent prostate cancer in mice
    Albertelli, Megan A.
    O'Mahony, Orla A.
    Brogley, Michele
    Tosoian, Jeffrey
    Steinkamp, Mara
    Daignault, Stephanie
    Wojno, Kirk
    Robins, Diane M.
    [J]. HUMAN MOLECULAR GENETICS, 2008, 17 (01) : 98 - 110
  • [2] Replacing the mouse androgen receptor with human alleles demonstrates glutamine tract length-dependent effects on physiology and tumorigenesis in mice
    Albertelli, Megan A.
    Scheller, Arno
    Brogley, Michele
    Robins, Diane M.
    [J]. MOLECULAR ENDOCRINOLOGY, 2006, 20 (06) : 1248 - 1260
  • [3] Role of AMPK-mTOR-Ulk1/2 in the Regulation of Autophagy: Cross Talk, Shortcuts, and Feedbacks
    Alers, Sebastian
    Loeffler, Antje S.
    Wesselborg, Sebastian
    Stork, Bjoern
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2012, 32 (01) : 2 - 11
  • [4] Identification of ubiquitin ligases required for skeletal muscle atrophy
    Bodine, SC
    Latres, E
    Baumhueter, S
    Lai, VKM
    Nunez, L
    Clarke, BA
    Poueymirou, WT
    Panaro, FJ
    Na, EQ
    Dharmarajan, K
    Pan, ZQ
    Valenzuela, DM
    DeChiara, TM
    Stitt, TN
    Yancopoulos, GD
    Glass, DJ
    [J]. SCIENCE, 2001, 294 (5547) : 1704 - 1708
  • [5] Cellular and molecular mechanisms of muscle atrophy
    Bonaldo, Paolo
    Sandri, Marco
    [J]. DISEASE MODELS & MECHANISMS, 2013, 6 (01) : 25 - 39
  • [6] ZKSCAN3 Is a Master Transcriptional Repressor of Autophagy
    Chauhan, Santosh
    Goodwin, Jinesh G.
    Chauhan, Swati
    Manyam, Ganiraju
    Wang, Jing
    Kamat, Ashish M.
    Boyd, Douglas D.
    [J]. MOLECULAR CELL, 2013, 50 (01) : 16 - 28
  • [7] Rapamycin-induced autophagy aggravates pathology and weakness in a mouse model of VCP-associated myopathy
    Ching, James K.
    Weihl, Conrad C.
    [J]. AUTOPHAGY, 2013, 9 (05) : 799 - 800
  • [8] AUTOPHAGY IN NEURITE INJURY AND NEURODEGENERATION: IN VITRO AND IN VIVO MODELS
    Chu, Charleen T.
    Plowey, Edward D.
    Dagda, Ruben K.
    Hickey, Robert W.
    Cherra, Salvatore J., III
    Clark, Robert S. B.
    [J]. METHODS IN ENZYMOLOGY VOL 453: AUTOPHAGY IN DISEASE AND CLINICAL APPLICATIONS, PT C, 2009, 453 : 217 - +
  • [9] Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity
    Corcelle, Elisabeth
    Nebout, Marielle
    Bekri, Soumeya
    Gauthier, Nils
    Hofman, Paul
    Poujeol, Philippe
    Fenichel, Patrick
    Mograbi, Baharia
    [J]. CANCER RESEARCH, 2006, 66 (13) : 6861 - 6870
  • [10] Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress
    Dagda, Ruben K.
    Zhu, Jianhui
    Kulich, Scott M.
    Chu, Charleen T.
    [J]. AUTOPHAGY, 2008, 4 (06) : 770 - 782