Construction and basic properties of Gaussian measures on Frechet spaces

被引:1
作者
Zapala, AM [1 ]
机构
[1] Catholic Univ Lublin, Dept Math & Nat Sci, PL-20950 Lublin, Poland
关键词
Frechet space; Gaussian measure; admissible shifts; the Brunn-Minkowski inequality;
D O I
10.1081/SAP-120003444
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the Gross' method of the construction of a Gaussian probability measure mu in the sense of Bernstein on infinite dimensional Banach spaces to an arbitrary separable Frechet space M. Next we describe basic properties of the constructed measure and discuss analogies between Gaussian measures in Banach and Frechet spaces. We investigate, among other things, the Hilbert space H of admissible shifts for the measure mu and show that the closed unit ball in H is a compact subset of M. Finally, we prove a generalized version of the Brunn-Minkowski inequality for Gaussian measures in Frechet spaces, which is the main tool in the proof of strong limit theorems for sums of Gaussian random elements in Frechet spaces.
引用
收藏
页码:445 / 470
页数:26
相关论文
共 24 条
[1]  
[Anonymous], CONVERGENCE RANDOM E
[2]  
[Anonymous], 1970, LECT MODERN ANAL APP
[3]  
[Anonymous], 1981, PROBABILITY DISTRIBU
[4]   GAUSSIAN RADON MEASURES ON LOCALLY CONVEX-SPACES [J].
BORELL, C .
MATHEMATICA SCANDINAVICA, 1976, 38 (02) :265-284
[5]  
BYCZKOWSKI T, 1977, STUD MATH, V59, P249
[6]   NORM CONVERGENT EXPANSION FOR L-PHI-VALUED GAUSSIAN RANDOM ELEMENTS [J].
BYCZKOWSKI, T .
STUDIA MATHEMATICA, 1979, 64 (02) :87-95
[7]   GAUSSIAN RANDOM SERIES ON METRIC VECTOR-SPACES [J].
BYCZKOWSKI, T ;
INGLOT, T .
MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (01) :39-50
[8]  
BYCZKOWSKI T, 1978, LECT NOTES MATH, V656, P1
[9]  
Byczkowski T., 1987, B ACAD POL SCI MATH, V35, P93
[10]  
GINE E, 1983, P AM MATH SOC, V88, P147