Fabrication of Luminescent Monolayered Tungsten Dichalcogenides Quantum Dots with Giant Spin-Valley Coupling

被引:189
作者
Lin, Liangxu [1 ]
Xu, Yaoxian [2 ]
Zhang, Shaowei [3 ]
Ross, Ian M. [4 ]
Ong, Albert C. M. [2 ]
Allwood, Dan A. [1 ]
机构
[1] Univ Sheffield, Dept Mat Sci & Engn, Sheffield S1 3JD, S Yorkshire, England
[2] Univ Sheffield, Dept Infect & Immun, Sheffield S10 2RX, S Yorkshire, England
[3] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 5QF, Devon, England
[4] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
monolayered tungsten dichalcogenides; quantum dots; luminescence; spin-valley coupling; WS2; SPECTROSCOPY; DISULFIDE;
D O I
10.1021/nn403682r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A high yield (>36 wt %) method has been developed of preparing monolayered tungsten dichalcogenide (WS2) quantum dots (QDs) with lateral size similar to 8-15 nm from multilayered WS2 flakes. The monolayered WS2 QDs are, like monolayered WS2 sheets, direct semiconductors despite the flake precursors being an indirect semiconductor. However, the QDs have a significantly larger direct transition energy (3.16 eV) compared to the sheets (2.1 eV) and enhanced photoluminescence (PL; quantum yield similar to 4%) in the blue-green spectral region at room temperature. UV/vis measurements reveal a giant spin-valley coupling of the monolayered WS2 QDs at around 570 meV, which is larger than that of monolayered WS2 sheets (similar to 400 meV). This spin-valley coupling was further confirmed by PL as direct transitions from the conduction band minimum to split valence band energy levels, leading to multiple luminescence peaks centered at around 369 (3.36 eV) and 461 nm (2.69 eV, also contributed by a new defect level). The discovery of giant spin-valley coupling and the strong luminescence of the monolayered WS2 QDs make them potentially of interests for the applications in semiconductor-based spintronics, conceptual valley-based electronics, quantum information technology and optoelectronic devices. However, we also demonstrate that the fabricated monolayered WS2 QDs can be a nontoxic fluorescent label for high contrast bioimaging application.
引用
收藏
页码:8214 / 8223
页数:10
相关论文
共 27 条
[1]   Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J].
Coleman, Jonathan N. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Bergin, Shane D. ;
King, Paul J. ;
Khan, Umar ;
Young, Karen ;
Gaucher, Alexandre ;
De, Sukanta ;
Smith, Ronan J. ;
Shvets, Igor V. ;
Arora, Sunil K. ;
Stanton, George ;
Kim, Hye-Young ;
Lee, Kangho ;
Kim, Gyu Tae ;
Duesberg, Georg S. ;
Hallam, Toby ;
Boland, John J. ;
Wang, Jing Jing ;
Donegan, John F. ;
Grunlan, Jaime C. ;
Moriarty, Gregory ;
Shmeliov, Aleksey ;
Nicholls, Rebecca J. ;
Perkins, James M. ;
Grieveson, Eleanor M. ;
Theuwissen, Koenraad ;
McComb, David W. ;
Nellist, Peter D. ;
Nicolosi, Valeria .
SCIENCE, 2011, 331 (6017) :568-571
[2]   Core and valence spectra of TaS2 and WS2 - Experimental and theoretical studies [J].
Dartigeas, K ;
Gonbeau, D ;
PfisterGuillouzo, G .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1996, 92 (22) :4561-4566
[3]   Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension -: art. no. 125407 [J].
Gordon, RA ;
Yang, D ;
Crozier, ED ;
Jiang, DT ;
Frindt, RF .
PHYSICAL REVIEW B, 2002, 65 (12) :1254071-1254079
[4]   Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers [J].
Gutierrez, Humberto R. ;
Perea-Lopez, Nestor ;
Elias, Ana Laura ;
Berkdemir, Ayse ;
Wang, Bei ;
Lv, Ruitao ;
Lopez-Urias, Florentino ;
Crespi, Vincent H. ;
Terrones, Humberto ;
Terrones, Mauricio .
NANO LETTERS, 2013, 13 (08) :3447-3454
[5]   Spectroscopy and trapping dynamics in WS2 nanoclusters [J].
Huang, JM ;
Laitinen, RA ;
Kelley, DF .
PHYSICAL REVIEW B, 2000, 62 (16) :10995-11005
[6]   Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior [J].
Hwang, Wan Sik ;
Remskar, Maja ;
Yan, Rusen ;
Protasenko, Vladimir ;
Tahy, Kristof ;
Chae, Soo Doo ;
Zhao, Pei ;
Konar, Aniruddha ;
Xing, Huili ;
Seabaugh, Alan ;
Jena, Debdeep .
APPLIED PHYSICS LETTERS, 2012, 101 (01)
[7]   Electronic Band Structures of Molybdenum and Tungsten Dichalcogenides by the GW Approach [J].
Jiang, Hong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (14) :7664-7671
[8]  
KAM KK, 1982, J PHYS CHEM-US, V86, P463, DOI 10.1021/j100393a010
[9]   HYDROGEN-SULFIDE ADSORPTION ON FAUJASITE-TYPE ZEOLITES WITH SYSTEMATICALLY VARIED SI-AL RATIOS [J].
KARGE, HG ;
RASKO, J .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1978, 64 (03) :522-532
[10]   Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes [J].
Lin, Liangxu ;
Zhang, Shaowei .
CHEMICAL COMMUNICATIONS, 2012, 48 (82) :10177-10179