Multi linear Fractional Hausdorff Operators

被引:15
作者
Fan, Da Shan [1 ]
Zhao, Fa You [2 ]
机构
[1] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Multilinear fractional Hausdorff operators; bilinear fractional Hardy operator; weak type; strong type; SPACES; HARDY; BOUNDEDNESS; MATRICES;
D O I
10.1007/s10114-014-3552-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by introducing the space with weak mixed norms, weak type estimates of two kinds of multilinear fractional Hausdorff operators R phi(beta) over bar and S phi,beta on Lebesgue spaces are shown. By virtue of Marcinkiewicz interpolation, strong type estimates of these two operators on Lebesgue spaces are also obtained. Our methods shed some new light on dealing with the case of non-radial function phi.
引用
收藏
页码:1407 / 1421
页数:15
相关论文
共 26 条
[1]   HARDY SPACES IN REINHARDT DOMAINS, AND HAUSDORFF OPERATORS [J].
Aizenberg, L. ;
Liflyand, E. .
ILLINOIS JOURNAL OF MATHEMATICS, 2009, 53 (04) :1033-1049
[2]  
Andersen KF., 2003, Acta Sci. Math, V69, P409
[3]  
[Anonymous], PURE APPL MATH
[4]  
Bennett G, 1999, HOUSTON J MATH, V25, P709
[5]   Multilinear Hausdorff operators and their best constants [J].
Chen, Jie Cheng ;
Fan, Da Shan ;
Zhang, Chun Jie .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (08) :1521-1530
[6]   Hausdorff operators on Euclidean spaces [J].
Chen Jie-cheng ;
Fan Da-shan ;
Wang Si-lei .
APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (04) :548-564
[7]   COMMUTATORS OF SINGULAR INTEGRALS AND BILINEAR SINGULAR INTEGRALS [J].
COIFMAN, RR ;
MEYER, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 212 (OCT) :315-331
[8]  
Fu ZW, 2012, HOUSTON J MATH, V38, P225
[9]   Hausdorff and quasi-Hausdorff matrices on spaces of analytic functions [J].
Galanopoulos, P. ;
Papadimitrakis, M. .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2006, 58 (03) :548-579
[10]   Hausdorff matrices and composition operators [J].
Galanopoulos, P ;
Siskakis, AG .
ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (03) :757-773