Nanothermometry: From Microscopy to Thermal Treatments

被引:71
作者
Zhou, Haiying [1 ]
Sharma, Monica [1 ]
Berezin, Oleg [3 ]
Zuckerman, Darryl [1 ]
Berezin, Mikhail Y. [1 ,2 ]
机构
[1] Washington Univ, Sch Med, Dept Radiol, St Louis, MO 63110 USA
[2] Washington Univ, Inst Mat Sci & Engn, St Louis, MO 63130 USA
[3] Mobichem Sci Engn Israel, Jerusalem, Israel
基金
美国国家科学基金会;
关键词
cell thermogenesis; imaging; nanothermometry; temperature sensors; thermal ablation; FLUORESCENCE CORRELATION SPECTROSCOPY; TEMPERATURE-MEASUREMENT; POLYMERIC THERMOMETER; LOCAL TEMPERATURE; QUANTUM DOTS; NANOPARTICLES; LIFETIME; PROBES; TRANSFECTION; ANISOTROPY;
D O I
10.1002/cphc.201500753
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Measuring temperature in cells and tissues remotely, with sufficient sensitivity, and in real time presents a new paradigm in engineering, chemistry and biology. Traditional sensors, such as contact thermometers, thermocouples, and electrodes, are too large to measure the temperature with subcellular resolution and are too invasive to measure the temperature in deep tissue. The new challenge requires novel approaches in designing biocompatible temperature sensorsnanothermometersand innovative techniques for their measurements. In the last two decades, a variety of nanothermometers whose response reflected the thermal environment within a physiological temperature range have been identified as potential sensors. This review covers the principles and aspects of nanothermometer design driven by two emerging areas: single-cell thermogenesis and image guided thermal treatments. The review highlights the current trends in nanothermometry illustrated with recent representative examples.
引用
收藏
页码:27 / 36
页数:10
相关论文
共 107 条
[1]   Femtosecond optical transfection of individual mammalian cells [J].
Antkowiak, Maciej ;
Torres-Mapa, Maria L. ;
Stevenson, David J. ;
Dholakia, Kishan ;
Gunn-Moore, Frank J. .
NATURE PROTOCOLS, 2013, 8 (06) :1216-1233
[2]   Oxygen-proof fluorescence temperature sensing with pristine C70 encapsulated in polymer nanoparticles [J].
Augusto, Vera ;
Baleizao, Carlos ;
Berberan-Santos, Mario N. ;
Farinha, Jose Paulo S. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (06) :1192-1197
[3]   Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy [J].
Baffou, G. ;
Kreuzer, M. P. ;
Kulzer, F. ;
Quidant, R. .
OPTICS EXPRESS, 2009, 17 (05) :3291-3298
[4]   A critique of methods for temperature imaging in single cells [J].
Baffou, Guillaume ;
Rigneault, Herve ;
Marguet, Didier ;
Jullien, Ludovic .
NATURE METHODS, 2014, 11 (09) :899-901
[5]   Temperature dependence of diffusion in model and live cell membranes characterized by imaging fluorescence correlation spectroscopy [J].
Bag, Nirmalya ;
Yap, Darilyn Hui Xin ;
Wohland, Thorsten .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2014, 1838 (03) :802-813
[6]  
Barton D.L., 2004, MICROELECTRONICS FAI, P378
[7]   Fluorescent microthermal imaging - Theory and methodology for achieving high thermal resolution images [J].
Barton, DL ;
Tangyunyong, P .
MICROELECTRONIC ENGINEERING, 1996, 31 (1-4) :271-279
[8]   Nd:YAG Near-Infrared Luminescent Nanothermometers [J].
Benayas, Antonio ;
del Rosal, Blanca ;
Perez-Delgado, Alberto ;
Santacruz-Gomez, Karla ;
Jaque, Daniel ;
Alonso Hirata, Gustavo ;
Vetrone, Fiorenzo .
ADVANCED OPTICAL MATERIALS, 2015, 3 (05) :687-694
[9]   Optically trapped microsensors for microfluidic temperature measurement by fluorescence lifetime imaging microscopy [J].
Bennet, Mathieu A. ;
Richardson, Patricia R. ;
Arlt, Jochen ;
McCarthy, Aongus ;
Buller, Gerald S. ;
Jones, Anita C. .
LAB ON A CHIP, 2011, 11 (22) :3821-3828
[10]   Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging [J].
Benninger, RKP ;
Koç, Y ;
Hofmann, O ;
Requejo-Isidro, J ;
Neil, MAA ;
French, PMW ;
deMello, AJ .
ANALYTICAL CHEMISTRY, 2006, 78 (07) :2272-2278