Terahertz-Frequency Signal Source Based on an Antiferromagnetic Tunnel Junction

被引:34
作者
Sulymenko, Olga R. [1 ]
Prokopenko, Oleksandr, V [1 ]
Tyberkevych, Vasyl S. [2 ]
Slavin, Andrei N. [2 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, UA-01601 Kiev, Ukraine
[2] Oakland Univ, Rochester, MI 48309 USA
基金
美国国家科学基金会;
关键词
Spin electronics; terahertz frequency; signal source; antiferromagnet; tunnel junction; output power; SPIN-POLARIZED CURRENT; MAGNETORESISTANCE; TEMPERATURE; SPINTRONICS; TECHNOLOGY; DEPENDENCE; BARRIER; DRIVEN; GAP;
D O I
10.1109/LMAG.2018.2852291
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a novel type of terahertz-frequency (TF) signal source based on an antiferromagnetic tunnel junction (ATJ), where the generated ac signal is extracted through the variations of the tunneling anisotropic magnetoresistance (TAMR) of an ATJ. The signal source comprises a layered structure consisting of a current-driven platinum (Pt) layer and a layer of an antiferromagnet (AFM) separated by an MgO spacer from an additional Pt electrode. A dc electric current flowing in the first Pt layer due to the spin Hall effect creates a perpendicular spin current that, being injected in the AFM layer, tilts the magnetizations of the AFM sublattices and, therefore, causes TF rotation of these magnetizations in a large internal exchange magnetic field of the AFM. This rotation, through the TAMR effect, causes the TF variation of the total resistance of the layered structure. We evaluate the output power and efficiency of the above-described Pt/AFM/MgO/Pt TF signal source, and demonstrate that optimization of the source's geometrical parameters allows one to obtain the output power exceeding 1 mu W at the frequency of 0.5 THz with the efficiency not smaller than 1%. Although the efficiency of the TAMR method of the TF signal extraction is reduced with the increase of the generation frequency, we believe that this method could be used for the generation of signals with frequencies of up to 10 THz due to its relative simplicity and convenience.
引用
收藏
页数:5
相关论文
共 28 条
[1]   Spin torque oscillator frequency versus magnetic field angle: The prospect of operation beyond 65 GHz [J].
Bonetti, Stefano ;
Muduli, Pranaba ;
Mancoff, Fred ;
Akerman, Johan .
APPLIED PHYSICS LETTERS, 2009, 94 (10)
[2]   Spin-Torque and Spin-Hall Nano-Oscillators [J].
Chen, Tingsu ;
Dumas, Randy K. ;
Eklund, Anders ;
Muduli, Pranaba K. ;
Houshang, Afshin ;
Awad, Ahmad A. ;
Durrenfeld, Philipp ;
Malm, B. Gunnar ;
Rusu, Ana ;
Akerman, Johan .
PROCEEDINGS OF THE IEEE, 2016, 104 (10) :1919-1945
[3]   Terahertz Antiferromagnetic Spin Hall Nano-Oscillator [J].
Cheng, Ran ;
Xiao, Di ;
Brataas, Arne .
PHYSICAL REVIEW LETTERS, 2016, 116 (20)
[4]  
Demidov VE, 2012, NAT MATER, V11, P1028, DOI [10.1038/NMAT3459, 10.1038/nmat3459]
[5]   Spintronics of antiferromagnetic systems [J].
Gomonay, E. V. ;
Loktev, V. M. .
LOW TEMPERATURE PHYSICS, 2014, 40 (01) :17-35
[6]   Spin transfer and current-induced switching in antiferromagnets [J].
Gomonay, Helen V. ;
Loktev, Vadim M. .
PHYSICAL REVIEW B, 2010, 81 (14)
[7]   Dependence of giant tunnel magnetoresistance of sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions on MgO barrier thickness and annealing temperature [J].
Hayakawa, J ;
Ikeda, S ;
Matsukura, F ;
Takahashi, H ;
Ohno, H .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2005, 44 (16-19) :L587-L589
[8]   TERAHERTZ TECHNOLOGY Towards THz integrated photonics [J].
Huebers, Heinz-Wilhelm .
NATURE PHOTONICS, 2010, 4 (08) :503-504
[9]  
Jungwirth T, 2016, NAT NANOTECHNOL, V11, P231, DOI [10.1038/NNANO.2016.18, 10.1038/nnano.2016.18]
[10]   Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current [J].
Khymyn, Roman ;
Lisenkov, Ivan ;
Tiberkevich, Vasyl ;
Ivanov, Boris A. ;
Slavin, Andrei .
SCIENTIFIC REPORTS, 2017, 7