Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review

被引:201
作者
Li, B. [1 ,2 ]
Delpha, C. [2 ]
Diallo, D. [1 ,3 ]
Migan-Dubois, A. [1 ]
机构
[1] Univ Paris Saclay, Sorbonne Univ, GeePs, Cent Supelec,CNRS, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
[2] Univ Paris Saclay, L2S, Cent Supelec, CNRS, F-91192 Gif Sur Yvette, France
[3] Shanghai Maritime Univ, Shanghai 201306, Peoples R China
关键词
Photovoltaic; Artificial neural network; Fault detection; Fault classification; Machine learning; Deep learning; INTELLIGENCE TECHNIQUES; DETECTION ALGORITHM; SYSTEMS-DESIGN; PERFORMANCE; CLASSIFICATION; DECOMPOSITION; RELIABILITY; DISCRETE; ARRAYS; OPTIMIZATION;
D O I
10.1016/j.rser.2020.110512
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The rapid development of photovoltaic (PV) technology and the growing number and size of PV power plants require increasingly efficient and intelligent health monitoring strategies to ensure reliable operation and high energy availability. Among the various techniques, Artificial Neural Network (ANN) has exhibited the functional capacity to perform the identification and classification of PV faults. In the present review, a systematic study on the application of ANN and hybridized ANN models for PV fault detection and diagnosis (FDD) is conducted. For each application, the targeted PV faults, the detectable faults, the type and amount of data used, the model configuration and the FDD performance are extracted, and analyzed. The main trends, challenges and prospects for the application of ANN for PV FDD are extracted and presented.
引用
收藏
页数:23
相关论文
共 148 条
[71]  
Krishnapuram R., 1993, IEEE Transactions on Fuzzy Systems, V1, P98, DOI 10.1109/91.227387
[72]  
Kurukuru VSB, 2019, 2019 INT C COMP INF, P1
[73]  
Laamami S, 2017, P 2017 INT C GREEN E, P1, DOI DOI 10.1109/GECS.2017.8066211
[74]   Artificial neural network modeling and sensitivity analysis for soiling effects on photovoltaic panels in Morocco [J].
Laarabi, B. ;
May Tzuc, O. ;
Dahlioui, D. ;
Bassam, A. ;
Flota-Banuelos, M. ;
Barhdadi, A. .
SUPERLATTICES AND MICROSTRUCTURES, 2019, 127 :139-150
[75]   Convergence properties of the Nelder-Mead simplex method in low dimensions [J].
Lagarias, JC ;
Reeds, JA ;
Wright, MH ;
Wright, PE .
SIAM JOURNAL ON OPTIMIZATION, 1998, 9 (01) :112-147
[76]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[77]  
Li CL, 2016, 2016 INTERNATIONAL CONFERENCE ON SMART CITY AND SYSTEMS ENGINEERING (ICSCSE), P483, DOI [10.1109/ICSCSE.2016.97, 10.1109/ICSCSE.2016.0132]
[78]   A Planar Location Method for DC Arc Faults Using Dual Radiation Detection Points and DANN [J].
Li, Kui ;
Zhao, Shuangle ;
Wang, Yao .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (08) :5478-5487
[79]   2D-LDA: A statistical linear discriminant analysis for image matrix [J].
Li, M ;
Yuan, BZ .
PATTERN RECOGNITION LETTERS, 2005, 26 (05) :527-532
[80]  
Li X., 2018, IMCIC 2018 9 INT MUL, V1, P22