A comparison of single-time relaxation lattice Boltzmann schemes with enhanced stability

被引:3
作者
Tosi, Francesca
Ubertini, Stefano
Succi, Sauro
Chen, Hudong
Karlin, Ilya V.
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
[2] Univ Roma Tor Vergata, Dip Ing Meccan, I-0133 Rome, Italy
[3] CNR, Ist Applicaz Calcolo, I-0161 Rome, Italy
[4] Exa Corp, Burlington, MA 01802 USA
[5] ETH Zentrum, Aerothemochem & Combust Syst Lab, Swiss Fed Inst Technol, CH-8092 Zurich, Switzerland
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2006年 / 17卷 / 10期
关键词
lattice Boltzmann method; stability; entropic; fix-up;
D O I
10.1142/S0129183106009163
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the recent years the entropic version of the lattice Boltzmann method (ELB) has made proof of significantly enhanced numerical stability as compared to the standard single-time relaxation form of the lattice Boltzmann equation. In this paper, we compare ELB with a more empirical procedure, based on the idea of modifying the value of the relaxation time in such a way as to enforce the positivity of the kinetic distribution function (fix-up method). The stability enhancement due to ELB and fix-up are compared for the case a two-dimensional lid-driven cavity flow. It is shown that ELBM offers higher stability at a moderate price in terms of computational overhead. On the other hand, even the simple fix-up procedure can provide significant savings over the standard single-time relaxation method, virtually cost-free in terms of computational requirements.
引用
收藏
页码:1375 / 1390
页数:16
相关论文
共 23 条
[11]  
DHUMIERES D, 1994, PROGR ASTRONAUT AERO, V159, P450
[12]   Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers [J].
Erturk, E ;
Corke, TC ;
Gökçöl, C .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 48 (07) :747-774
[13]   Grid refinement for lattice-BGK models [J].
Filippova, O ;
Hanel, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (01) :219-228
[14]   LATTICE GAS-DYNAMICS WITH ENHANCED COLLISIONS [J].
HIGUERA, FJ ;
SUCCI, S ;
BENZI, R .
EUROPHYSICS LETTERS, 1989, 9 (04) :345-349
[15]   SIMULATION OF CAVITY FLOW BY THE LATTICE BOLTZMANN METHOD [J].
HOU, SL ;
ZOU, Q ;
CHEN, SY ;
DOOLEN, G ;
COGLEY, AC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 118 (02) :329-347
[16]   Perfect entropy functions of the Lattice Boltzmann method [J].
Karlin, IV ;
Ferrante, A ;
Öttinger, HC .
EUROPHYSICS LETTERS, 1999, 47 (02) :182-188
[17]   Maximum entropy principle for lattice kinetic equations [J].
Karlin, IV ;
Gorban, AN ;
Succi, S ;
Boffi, V .
PHYSICAL REVIEW LETTERS, 1998, 81 (01) :6-9
[18]  
Li YB, 2004, J FLUID MECH, V519, P273, DOI [10.1017/S0022112004001272, 10.1017/s0022112004001272]
[19]   On the finite difference-based lattice Boltzmann method in curvilinear coordinates [J].
Mei, RW ;
Shyy, W .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 143 (02) :426-448
[20]   An accurate curved boundary treatment in the lattice Boltzmann method [J].
Mei, RW ;
Luo, LS ;
Shyy, W .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 155 (02) :307-330