A comparison of single-time relaxation lattice Boltzmann schemes with enhanced stability

被引:3
作者
Tosi, Francesca
Ubertini, Stefano
Succi, Sauro
Chen, Hudong
Karlin, Ilya V.
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
[2] Univ Roma Tor Vergata, Dip Ing Meccan, I-0133 Rome, Italy
[3] CNR, Ist Applicaz Calcolo, I-0161 Rome, Italy
[4] Exa Corp, Burlington, MA 01802 USA
[5] ETH Zentrum, Aerothemochem & Combust Syst Lab, Swiss Fed Inst Technol, CH-8092 Zurich, Switzerland
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2006年 / 17卷 / 10期
关键词
lattice Boltzmann method; stability; entropic; fix-up;
D O I
10.1142/S0129183106009163
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the recent years the entropic version of the lattice Boltzmann method (ELB) has made proof of significantly enhanced numerical stability as compared to the standard single-time relaxation form of the lattice Boltzmann equation. In this paper, we compare ELB with a more empirical procedure, based on the idea of modifying the value of the relaxation time in such a way as to enforce the positivity of the kinetic distribution function (fix-up method). The stability enhancement due to ELB and fix-up are compared for the case a two-dimensional lid-driven cavity flow. It is shown that ELBM offers higher stability at a moderate price in terms of computational overhead. On the other hand, even the simple fix-up procedure can provide significant savings over the standard single-time relaxation method, virtually cost-free in terms of computational requirements.
引用
收藏
页码:1375 / 1390
页数:16
相关论文
共 23 条
[1]   Minimal entropic kinetic models for hydrodynamics [J].
Ansumali, S ;
Karlin, IV ;
Öttinger, HC .
EUROPHYSICS LETTERS, 2003, 63 (06) :798-804
[2]  
Ansumali S, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.056312
[3]   Entropy function approach to the Lattice Boltzmann method [J].
Ansumali, S ;
Karlin, HV .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (1-2) :291-308
[4]  
Ansumali S., 2004, THESIS ETH ZURICH
[5]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[6]   Entropic lattice Boltzmann methods [J].
Boghosian, BM ;
Yepez, J ;
Coveney, PV ;
Wager, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2007) :717-766
[7]   H-theorem and origins of instability in thermal lattice Boltzmann models [J].
Chen, H ;
Teixeira, C .
COMPUTER PHYSICS COMMUNICATIONS, 2000, 129 (1-3) :21-31
[8]   RECOVERY OF THE NAVIER-STOKES EQUATIONS USING A LATTICE-GAS BOLTZMANN METHOD [J].
CHEN, HD ;
CHEN, SY ;
MATTHAEUS, WH .
PHYSICAL REVIEW A, 1992, 45 (08) :R5339-R5342
[9]   LATTICE BOLTZMANN MODEL FOR SIMULATION OF MAGNETOHYDRODYNAMICS [J].
CHEN, SY ;
CHEN, HD ;
MARTINEZ, D ;
MATTHAEUS, W .
PHYSICAL REVIEW LETTERS, 1991, 67 (27) :3776-3779
[10]   Nonlinear stability of compressible thermal lattice BGK models [J].
De Cicco, M ;
Succi, S ;
Bella, G .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (01) :366-377