A degenerate parabolic system with self-diffusion for a mutualistic model in ecology

被引:15
作者
Kim, Kwang Ik
Lin, Zhigui [1 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Peoples R China
[2] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South Korea
关键词
degenerate diffusion system; blowup; global solution; competition;
D O I
10.1016/j.nonrwa.2005.03.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the behavior of positive solution for a degenerate parabolic system with homo-geneous Dirichlet boundary conditions describing a cooperating two-species Lotka-Volterra model. The local existence and uniqueness of a classical solution are given. Some comparison principles and positivity lemmas are also presented. Further, we show that the solution is global if the intra-specific competitions of the species are strong. whereas the solution may blow up if the intra-specific competitions are weak. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:597 / 609
页数:13
相关论文
共 18 条
[11]   Dynamics of nonlinear parabolic systems with time delays [J].
Pao, CV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 198 (03) :751-779
[12]   Some degenerate and quasilinear parabolic systems not in divergence form [J].
Wang, MX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 274 (01) :424-436
[13]   A nonlinear degenerate diffusion equation not in divergence form [J].
Wang, S ;
Wang, MX ;
Xie, CH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (01) :149-159
[14]   An example of blowup produced by equal diffusions [J].
Weinberger, HF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 154 (01) :225-237
[15]  
WIEGNER M, 1994, DIFFERENTIAL INTEGRA, V7, P1641
[16]  
WIEGNER M, 2002, MATH METHOD APPL SCI, V25, P911
[17]  
WIEGNER M, 2003, J DIFFER EQUATIONS, V192, P445
[18]   GLOBAL-SOLUTIONS FOR QUASI-LINEAR PARABOLIC-SYSTEMS WITH CROSS-DIFFUSION EFFECTS [J].
YAMADA, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (09) :1395-1412