A degenerate parabolic system with self-diffusion for a mutualistic model in ecology

被引:15
作者
Kim, Kwang Ik
Lin, Zhigui [1 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Peoples R China
[2] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South Korea
关键词
degenerate diffusion system; blowup; global solution; competition;
D O I
10.1016/j.nonrwa.2005.03.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the behavior of positive solution for a degenerate parabolic system with homo-geneous Dirichlet boundary conditions describing a cooperating two-species Lotka-Volterra model. The local existence and uniqueness of a classical solution are given. Some comparison principles and positivity lemmas are also presented. Further, we show that the solution is global if the intra-specific competitions of the species are strong. whereas the solution may blow up if the intra-specific competitions are weak. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:597 / 609
页数:13
相关论文
共 18 条
[1]   ANALYSIS OF BLOWUP FOR A NONLINEAR DEGENERATE PARABOLIC EQUATION [J].
CHEN, HW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 192 (01) :180-193
[2]   Global and blow-up solutions for nonlinear degenerate parabolic systems with crosswise-diffusion [J].
Duan, ZW ;
Zhou, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 244 (02) :263-278
[3]  
FRIEDMAN A, 1987, ARCH RATIONAL MECH A, V96, P55
[4]  
GALAKTIONOV VA, 1983, DIFF EQUAT+, V19, P1558
[5]  
GALAKTIONOV VA, 1985, DIFF EQUAT+, V21, P1049
[6]   NONEXISTENCE OF GLOBAL SOLUTIONS OF SOME SEMILINEAR PARABOLIC DIFFERENTIAL EQUATIONS [J].
HAYAKAWA, K .
PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (07) :503-505
[7]  
Ladyzenskaja O. A., 1968, Linear and Quasi-linear Equation of Parabolic Type
[8]   On diffusion-induced blowups in a mutualistic model [J].
Lou, Y ;
Nagylaki, T ;
Ni, WM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (03) :329-342
[9]  
Mizoguchi N., 1998, J DYN DIFFER EQU, V10, P619, DOI [DOI 10.1023/A:1022633226140, 10.1023/A:1022633226140]
[10]  
Pao C.V., 1992, NONLINEAR PARABOLIC, DOI DOI 10.1007/978-1-4615-3034-3