The through-plane thermal conductivity and the contact resistance of the components of the membrane electrode assembly and gas diffusion layer in proton exchange membrane fuel cells

被引:36
作者
Alhazmi, N. [1 ]
Ingham, D. B. [1 ]
Ismail, M. S. [1 ]
Hughes, K. [1 ]
Ma, L. [1 ]
Pourkashanian, M. [1 ]
机构
[1] Univ Leeds, Energy Technol Innovat Initiat, Ctr Computat Fluid Dynam, Leeds LS2 9JT, W Yorkshire, England
关键词
PEM fuel cells; Gas diffusion layers; Membrane; Catalyst layer; Through-plane thermal conductivity; Thermal contact resistance;
D O I
10.1016/j.jpowsour.2014.07.082
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The thermal conductivity of the components of the membrane electrode assembly (MEA) and GDL must be accurately estimated in order to better understand the heat transfer processes in the proton exchange membrane (PEM) fuel cells. In this study, an experimental investigation has been performed to measure the through-plane thermal conductivity and the contact resistance for a number of gas diffusion layer (GDL) materials. The sensitivity of these quantities to the temperature, PTFE content and micro porous layer (MPL) coating has been undertaken. In addition, the through-plane thermal conductivity of the membrane has been measured and reported as a function of temperature and water content. Further, the through-plane thermal conductivity of the catalyst layer has been determined as a function of temperature and platinum loading. It has been found that the through-plane thermal conductivity of the components of the MEA decreases when the temperature increases, and the through-plane thermal conductivity of the GDL is significantly lower than its in-plane thermal conductivity. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 67
页数:9
相关论文
共 31 条
[1]   The in-plane thermal conductivity and the contact resistance of the components of the membrane electrode assembly in proton exchange membrane fuel cells [J].
Alhazmi, N. ;
Ismail, M. S. ;
Ingham, D. B. ;
Hughes, K. J. ;
Ma, L. ;
Pourkashanian, M. .
JOURNAL OF POWER SOURCES, 2013, 241 :136-145
[2]  
[Anonymous], 2008, NAF PROD SHEET
[3]  
[Anonymous], 1989, FLOW TRANSPORT POROU, DOI DOI 10.1007/978-3-642-75015-1
[4]   Three-dimensional computational analysis of transport phenomena in a PEM fuel cell [J].
Berning, T ;
Lu, DM ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :284-294
[5]   Characterization of PTFE Using Advanced Thermal Analysis Techniques [J].
Blumm, J. ;
Lindemann, A. ;
Meyer, M. ;
Strasser, C. .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2010, 31 (10) :1919-1927
[6]   Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell [J].
Burheim, O. ;
Vie, P. J. S. ;
Pharoah, J. G. ;
Kjelstrup, S. .
JOURNAL OF POWER SOURCES, 2010, 195 (01) :249-256
[7]   Through-Plane Thermal Conductivity of PEMFC Porous Transport Layers [J].
Burheim, Odne S. ;
Pharoah, Jon G. ;
Lampert, Hannah ;
Vie, Preben J. S. ;
Kjelstrup, Signe .
JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2011, 8 (02)
[8]  
Choy CL, 1999, J POLYM SCI POL PHYS, V37, P3359, DOI 10.1002/(SICI)1099-0488(19991201)37:23<3359::AID-POLB11>3.0.CO
[9]  
2-S
[10]   Characterization of PEMFCs gas diffusion layers properties [J].
Escribano, Sylvie ;
Blachot, Jean-Francois ;
Etheve, Jeremy ;
Morin, Arnaud ;
Mosdale, Renaut .
JOURNAL OF POWER SOURCES, 2006, 156 (01) :8-13