Constructions of bi-regular cages

被引:12
作者
Araujo-Pardo, G. [1 ]
Balbuena, C. [2 ]
Valenzuela, J. C. [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Univ Politecn Cataluna, Dept Matemat Aplicada 3, E-08034 Barcelona, Spain
[3] Univ Cadiz, Dept Matemat, EPS Algeciras, E-11202 Cadiz, Spain
关键词
Cage graphs; Girth; GRAPHS;
D O I
10.1016/j.disc.2008.02.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given three positive integers r, m and g, one interesting question is the Following: What is the minimum number of vertices that a graph with prescribed degree set {r, m}, 2 <= r < m, and girth g can have? Such a graph is called a bi-regular cage or an ({r, m}; g)-cage, and its minimum order is denoted by n ({r, m}; g). In this paper we provide new upper bounds on n({r, m}; g) for some related values of r and m. Moreover, if r - 1 is a prime power, we construct the following bi-regular cages: ({r, k(r - 1)}; g)-cages for g is an element of {5, 7, 11} and k >= 2 even; and ({r, kr}; 6)-cages for k >= 2 any integer. The latter cages are of order n({r, kr}; 6) = 2(kr(2) - kr + 1). Then this result supports the conjecture that n({r, m}; 6) = 2(rm - m + 1) for any r < m, posed by Yuansheng and Liang [Y. Yuansheng, W. Liang, The minimum number of vertices with girth 6 and degree set D = {r, m}, Discrete Math. 269 (2003) 249-258]. We finalize giving the exact value n({3, 3k}; 8), for k >= 2. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1409 / 1416
页数:8
相关论文
共 24 条
[1]  
Abreu M, 2006, AUSTRALAS J COMB, V35, P119
[2]  
Araujo G, 2007, AUSTRALAS J COMB, V38, P221
[3]   On the order of ({r, m}; g)-cages of even girth [J].
Araujo-Pardo, G. ;
Balbuena, C. ;
Garcia-Vazquez, P. ;
Marcote, X. ;
Valenzuela, J. C. .
DISCRETE MATHEMATICS, 2008, 308 (12) :2484-2491
[4]  
ARAUJOPARDO G, FINDING SMALL UNPUB
[5]  
BALBUENA C, INCIDENCE MATR UNPUB
[6]  
BALBUENA C, METHOD OBTAINI UNPUB
[7]  
BALBUENA C, R G CAGES D G UNPUB
[8]  
Biggs N., 1993, ALGEBRAIC GRAPH THEO
[9]  
Bollobas B., 1978, EXTREMAL GRAPH THEOR
[10]  
Buekenhout F., 1995, Handbook of Incidence Geometry