Ergodic theory of infinite dimensional systems with applications to dissipative parabolic PDEs

被引:42
作者
Masmoudi, N [1 ]
Young, LS [1 ]
机构
[1] Courant Inst Math Sci, New York, NY 10012 USA
关键词
Dynamical System; Invariant Measure; Ergodic Theory; Dimensional System; Stokes System;
D O I
10.1007/s002200200639
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a class of randomly perturbed dynamical systems satisfying conditions which reflect the properties of general (nonlinear) dissipative parabolic PDEs. Results on invariant measures and their exponential mixing properties are proved, and applications to 2D Navier-Stokes systems are included.
引用
收藏
页码:461 / 481
页数:21
相关论文
共 15 条
[1]  
[Anonymous], 1976, LECT NOTES MATH
[2]  
BRICMONT J, 2000, EXPONENTIAL MIXING 2
[3]  
Constantin P., 1988, CHICAGO LECT MATH
[4]  
ECKMANN JP, 2000, UNIQUENESS INVARIANT
[5]  
Flandoli F., 1994, NODEA-NONLINEAR DIFF, V1, P403
[6]   Stochastic dissipative PDE's and Gibbs measures [J].
Kuksin, S ;
Shirikyan, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 213 (02) :291-330
[7]  
KUKSIN S, 2001, COUPLING APPROACH RA, V2
[8]  
KUKSIN S, 2001, COUPLING APPROACH RA
[9]  
KUKSIN SB, 2000, DISSIPATIVE SYSTEMS
[10]  
LEJAN Y, 1987, ANN I H POINCARE-PR, V23, P111